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A powerful theoretical framework for exploring recognition memory is the global matching framework,
in which a cue’s memory strength reflects the similarity of the retrieval cues being matched against the
contents of memory simultaneously. Contributions at retrieval can be categorized as matches and
mismatches to the item and context cues, including the self match (match on item and context), item noise
(match on context, mismatch on item), context noise (match on item, mismatch on context), and
background noise (mismatch on item and context). We present a model that directly parameterizes the
matches and mismatches to the item and context cues, which enables estimation of the magnitude of each
interference contribution (item noise, context noise, and background noise). The model was fit within a
hierarchical Bayesian framework to 10 recognition memory datasets that use manipulations of strength,
list length, list strength, word frequency, study-test delay, and stimulus class in item and associative
recognition. Estimates of the model parameters revealed at most a small contribution of item noise that
varies by stimulus class, with virtually no item noise for single words and scenes. Despite the
unpopularity of background noise in recognition memory models, background noise estimates dominated
at retrieval across nearly all stimulus classes with the exception of high frequency words, which exhibited
equivalent levels of context noise and background noise. These parameter estimates suggest that the
majority of interference in recognition memory stems from experiences acquired before the learning

episode.
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Perhaps the biggest theoretical advance in recognition memory
was the application of signal detection theory (SDT) by Egan
(1958). SDT recast the role of a participant in a recognition
memory experiment as having to decide between whether a pre-
sented stimulus is an instance of noise alone (a nonstudied stim-
ulus) or signal embedded in noise (a studied stimulus). This is
accomplished by comparing the memory strength elicited by a
stimulus (that is assumed to be continuously distributed) to a
decision criterion on the memory strength axis; stimuli with mem-
ory strengths that exceed the decision criterion are judged as
having occurred on the study list. Despite the utility of SDT in
applications to measurement (Green & Swets, 1966), it is agnostic
as to the psychological content of the signal and noise distribu-
tions. Specifying the psychological content of the distributions
requires process models that describe the encoding and retrieval
operations of the memory system along with the content of the
stored representations.
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A watershed moment in process models of recognition memory
came with the global matching models of recognition memory.
Although early theories of recognition memory described the
signal and noise distributions as arising from a strength of the
stimulus in memory (Wickelgren & Norman, 1966), global match-
ing models, following the encoding specificity principle of Tulving
and Thomson (1973), posit that memory strength arises from the
similarity between the retrieval cues and the contents of memory.
Specifically, the cues are matched against all of the acquired
memories in parallel, producing a single memory strength value
that indexes the similarity of the cues to the contents of memory
(Clark & Gronlund, 1996; Humphreys, Pike, Bain, & Tehan,
1989). In the majority of the global matching models, the distance
between the signal and noise distributions arises from the match
between the target item and its own representation in memory,
whereas the variances of the two distributions arise primarily from
spurious similarities between the cues and nontarget representa-
tions stored in memory.

Although several models have taken the simplifying assumption
that only the memories from the study list contribute to the
retrieval strengths, the frameworks are quite compatible with in-
corporating contributions from memories learned before an exper-
iment. The division between recently acquired and prior memories
can be reconciled quite easily by virtue of a context representation,
which is now featured in the majority of episodic memory models
(J. R. Anderson & Bower, 1972; G. D. A. Brown, Preece, &
Hulme, 2000; Cox & Shiffrin, 2012; Criss & Shiffrin, 2004;
Dennis & Humphreys, 2001; Farrell, 2012; Gillund & Shiffrin,
1984; Howard & Kahana, 2002; Humphreys, Bain, & Pike, 1989;
Lehman & Malmberg, 2013; Mensink & Raaijmakers, 1988; Mur-
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dock, 1997; Shiffrin & Steyvers, 1997). Although there is no
universally accepted definition of context, the central assumption
among most theorists is that context is what enables retrieval to be
focused on a particular episode, namely a study list (Klein, Shif-
frin, & Criss, 2007). Learning in contextual models does not
merely consist of learning the stimulus, but instead consists of
acquiring a binding of the stimulus and a representation of the
current context into the contents of memory. At retrieval, the probe
cue along with a reinstatement of the study context can be matched
against the contents of memory. Under this view, memories of the
list items can be distinguished from prior list memories by virtue
of the similarity of the stored context representations to the context
cues used at retrieval. Specifically, successful discrimination relies
on memories from the study list episode exhibiting more similarity
to the context cue, whereas temporally distant memories should be
relatively dissimilar to the current context to minimize interfer-
ence.

The contributions from prior memories and current memories
can be conceptualized as matches and mismatches of the stored
memories to the item and context cues used at retrieval, with the
magnitudes of each interference contribution determined by the
similarities of the matches and mismatches (see Figure 1). Specif-
ically, the locus of successful discrimination is the self match,
which is a match on stored item and context information to the
item and context cues used at retrieval. Other items from the study
list episode match in context information, but mismatch in item
information. An assumption adopted by the earliest global match-
ing models, including Minerva 2 (Hintzman, 1988), the search of
associative memory (SAM; Gillund & Shiffrin, 1984) model, the
theory of distributed associative memory (TODAM; Murdock,
1982), and the matrix model (Pike, 1984; Humphreys, Bain, &
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Pike, 1989), is that the studied items of the list episode are the
principal source of interference, an idea that has been retroactively
referred to as the item noise conception of interference.

What was considered a strength of the pure item noise global
matching models at the time was their ability to account for the list
length effect in recognition memory performance, whereby perfor-
mance decreases as the number of items on a list is increased
(Strong, 1912). In global matching models, the spurious similarity
between the retrieval cues and a stored memory produces a mem-
ory strength value with nonzero variance, and the variances of the
resulting distributions are the sums of the variances of the indi-
vidual matches. The list length effect naturally arises from the
early global matching models because only the list items are
assumed to be stored in memory and are, therefore, the principal
source of interference. Thus, as more items are added to the
contents of memory, the cumulative memory strength is a sum
over a larger number of items and the variance in memory
strengths for both targets and lures are increased, decreasing dis-
criminability.

An unintended consequence of pure item noise models is that
the models predict a list strength effect in recognition memory
performance. A list strength effect occurs when the strengthening
of nontarget items decreases performance on the target items.
Global matching models predicted a list strength effect in recog-
nition memory because item repetitions exhibited the same func-
tional effect as increasing the length of a study list, as each
repeated item in memory contributed additional variance to the
retrieval process (for a complete description of how each global
matching model was unable to predict a null list strength effect, see
Shiffrin, Ratcliff, & Clark, 1990). However, Ratcliff et al.’s (1990)
investigation found no effect of list strength on recognition mem-
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Figure 1. Diagram of the different sources of interference on retrieval within a global matching model.
Depicted is a simplification the contents of memory, which include memories formed during the study list
episode and memories from prior contexts. The probe cue and the study context are matched against the contents
of memory simultaneously. The self match refers to an exact match on item and context information, in that the
cues are matched against a representation of the cue item formed during the study list episode. Item noise refers
to a match on context information but a mismatch on context information, in that the items are different from
the probe cue but the memories were formed during the list episode. Context noise refers to a match on item
information but a mismatch on context information, in that the memories are of the cue item but were formed
before the list episode. Background noise refers to a mismatch on both item and context information. The
magnitudes of each source of interference depend on the similarities between the matches and mismatches on
item and context information. See the online article for the color version of this figure.
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ory performance, as the strengthening a subset of list items did not
impair recognition of the nonstrengthened items and strong items
did not benefit from being accompanied by weak items on a study
list.

The null list strength effect was a strong constraint on the global
matching models and various alternatives to the original global
matching models were proposed. First, models with a revised
encoding process called differentiation were proposed that reduce
interitem similarity as the strengths of the study items is increased,
allowing for a reduction in item noise with increasing strength
such that no detrimental effect of list strength is predicted. Addi-
tional items that are added to the contents of memory do not induce
differentiation, and thus, additional items increase the degree of
item noise and a list length effect is predicted. Differentiation
models include a modified version of the SAM model (Shiffrin,
Ratcliff, & Clark, 1990), the retrieving effectively from memory
model (REM; Shiffrin & Steyvers, 1997) and the subjective like-
lihood in memory model (SLiM; McClelland & Chappell, 1998,
additional discussion on differentiation models can be found in the
General Discussion). However, one of the main motivations be-
hind the differentiation mechanism was to simultaneously predict
a null list strength effect while predicting detrimental effects of
increasing list length, and more recent evidence suggests that this
dissociation may not be present.

Dennis and colleagues (Dennis & Humphreys, 2001; Dennis,
Lee, & Kinnell, 2008; Kinnell & Dennis, 2011) have noted that
experiments that manipulate list length contain a number of con-
founds that may be causing worse performance in conditions with
longer lists for reasons unrelated to interference among the list
items. For instance, the retention intervals are shorter for short lists
than long lists if testing immediately follows the end of the study
list, reducing performance for items on the long list. When this
confound and others are controlled, all experiments conducted by
Dennis and colleagues that used words as stimuli have found no
effect of list length on discriminability. Two other modifications to
the global matching framework can allow for predicting null
effects of list length and list strength on recognition memory
performance.

Dennis and Humphreys (2001) argued that interference arises
not from the list items (as assumed by pure item noise models) but
from memories of the list items acquired before the experiment.
Specifically, the retrieval cues are not just matched against repre-
sentations from the list episode, but are matched against all of the
contexts in which the items were experienced to evaluate whether
the context of the study list is included in the set of all stored
context representations. This conception of interference has been
referred to as context noise, because it is the past contexts in which
the list items have been experienced (context mismatch) that
generate interference in recognition memory (an idea that origi-
nated from J. R. Anderson & Bower, 1972). Dennis and Hum-
phreys (2001) introduced the bind-cue-decide model of episodic
memory (BCDMEM), in which context noise was the sole source
of interference in the model. Item representations in the model do
not overlap with each other, meaning that the item mismatch
penalty is zero and no effects of item noise, namely list length and
list strength, are predicted. Dennis and Humphreys (2001) also
demonstrated that the word frequency effect, in which words of
low natural language frequency are better recognized than words
of high natural language frequency (Glanzer & Adams, 1985;

Glanzer & Bowles, 1976; Shepard, 1967), follows quite naturally
from the concept of context noise: items that have been more
frequently experienced have more associations to prior contexts,
and thus, there is more ambiguity as to whether or not they were
seen in a given context. This is analogous to the manner in which
item noise models predict a list length effect in the sense that more
stored representations produce additional interference at retrieval.

Another solution to the list strength effect came from Murdock
and Kahana (Murdock, 1997; Murdock & Kahana, 1993a, 1993h),
who posited that global matching models should include a large
number of memories that mismatch in both item and context
information. This conception of interference has since been re-
ferred to as background noise by Osth, Dennis, and Kinnell (2014).
Murdock and Kahana (1993a) argued that if the contribution of
background noise is large relative to the item noise from the list
items, then increases in interference that come from a list strength
manipulation will produce only a negligible increase in the vari-
ances of the memory strength distributions; thus, producing an
approximate null list strength effect. Osth et al. (2014) revisited the
idea of background noise for explaining the small item noise
effects found for novel nonlinguistic stimuli.

Kinnell and Dennis (2012) and Osth et al. (2014) conducted
experiments using images of nonfamous faces, random scenes, and
generated fractals that are unlikely to have been ever witnessed by
the participants before the experiment. Given the novelty of the
stimuli, they cannot suffer from context noise as they are unlikely
to have been seen in prior contexts. Unlike words, small effects of
list length (Kinnell & Dennis, 2012) and list strength (Osth et al.,
2014) were found for select nonlinguistic stimuli using the list
length controls advocated by Dennis and colleagues. Although
detrimental effects of list length and list strength are not predicted
by context noise models, they were much smaller than what would
be predicted by pure item noise models. Osth et al. (2014) posited
that novel nonlinguistic stimuli might suffer from larger item noise
than words, possibly because of exhibiting a higher degree of
within-class interitem similarity than words, but the effects of list
length and list strength are somewhat mitigated by the additional
influence of background noise at retrieval. Background noise has
received relatively little attention in the recognition memory liter-
ature compared with the discussions of the influence of item and
context noise. A diagram depicting the three sources of interfer-
ence (item noise, context noise, and background noise) can be seen
in Figure 1. The present investigation is focused on simultaneously
measuring all three sources of interference by fitting a global
matching model to a large number of recognition memory datasets.

Measuring Interference Contributions Within a Single
Global Matching Model

A number of investigations have compared the relative merits of
the item noise and context noise approaches to recognition memory
using experimental data (Cho & Neely, 2013; Criss, Malmberg, &
Shiffrin, 2011; Dennis & Chapman, 2010; Dennis et al., 2008; Kinnell
& Dennis, 2011), with interpretations favoring either the item noise or
context noise accounts, while there was little discussion of the role of
background noise in any of these investigations. More recently,
Turner, Dennis, and Van Zandt (2013) compared the REM (the
original pure item noise version) and BCDMEM models in their
ability to account for data from the list length paradigm (specifically
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the datasets of Dennis et al., 2008 and Kinnell & Dennis, 2012) using
hierarchical Bayesian methods. BCDMEM consistently exhibited
lower values of the deviance information criterion (DIC), a Bayesian
model selection measure that measures goodness of fit relative to the
degree of model complexity. Turner, Dennis, and Van Zandt (2013)
attributed the superior performance of the BCDMEM model to the
fact that the null list length effect in the data are a compulsory
prediction of the BCDMEM model, whereas REM exhibits flexibility
in its predicted magnitude of the list length effect. The higher DIC
value assigned to the REM model may indicate that this flexibility is
an unwarranted complexity of the model, and the authors attributed
this strength to a parsimony of the context noise account.

However, as noted by Criss and Shiffrin (2004), item noise and
context noise are not mutually exclusive; it is completely plausible for
a memory system to suffer from both item noise and context noise at
retrieval. Not only does there remain the underexplored interference
contribution of background noise, but there is also the possibility that
the magnitude of each interference contribution depends on the stim-
ulus class being used. In this article, we present the results of fitting
a global matching model to a large number of recognition memory
datasets and measuring the respective contributions of item noise,
context noise, and background noise to the total interference contri-
bution at retrieval. The model is a variant of the tensor model of
Humphreys, Bain, and Pike (1989), in which memory is a composite
of three-way bindings between two items and the experimental con-
text.

We deviate from the approach used in the original tensor model and
several other vector based models by avoiding specification of the
vectors. That is, the standard approach is to generate item and context
vectors from a sampling distribution with a finite number of elements,
and model predictions are derived by calculating the dot products
between vectors to index the strength of the matches. This approach
requires one to commit to parameters such as the number of elements
in the vector, which typically do not have a direct psychological
interpretation. In our approach, we avoid specifying the vectors and
instead parameterize the similarities between the item and context
vectors. As we will later demonstrate in the article, the parameters of
the model can be used to analytically calculate the magnitude of the
item noise, context noise, and background noise contributions. The
datasets included in the fit include manipulations of all of the variables
that are required to constrain the parameters of the model, such as
strength, word frequency, list length, list strength, and study-test
delay.

Furthermore, a critical limitation of the BCDMEM model was its
inability to account for stimuli other than single words (that have the
necessary background experience to suffer from context noise) and
that it lacks a mechanism for interitem binding, which prevents
extension to associative memory tasks such as associative recognition.
As we have mentioned previously, experiments with novel nonlin-
guistic stimulus classes uncovered small detrimental effects of list
length and list strength, which are consistent with item noise models
but inconsistent with context noise models (Kinnell & Dennis, 2012;
Osth et al., 2014). However, as noted by Osth et al. (2014), the
detrimental effects of list length and list strength were quite small in
magnitude compared with what would be expected from a pure item
noise model, and they suggested that both item noise and background
noise are relevant to understanding recognition memory performance
for nonlinguistic stimuli. The model we are presenting is capable of
addressing these sources of interference and we have included the

experiments conducted in these two articles to compare the interfer-
ence contributions across the different stimulus classes. Although one
might be concerned that including all interference sources produces a
more flexible model, the fact that nonlinguistic stimuli may meaning-
fully differ in their susceptibility to these different interference sources
justifies a comprehensive model.

Additionally, we have included experiments conducted using the
associative recognition task, in which participants study a list of pairs
(such as A-B, C-D, E-F, etc.) and are asked to discriminate between
studied pairs (such as A-B, referred to as intact pairs) and studied
words presented in a novel arrangement (such as C-F, referred to as
rearranged pairs). There has been relatively little discussion as to the
sources of interference in the associative recognition task in the
literature. We include the results of two experiments, one that manip-
ulated list length (Kinnell & Dennis, 2012) and one that manipulated
list strength (Osth & Dennis, 2014) to measure the sources of inter-
ference in associative recognition.

The outline for the remainder of the article is as follows. First, we
describe our variant of the Humphreys, Bain, and Pike (1989) model
and how it calculates the three sources of interference that have been
postulated to affect recognition memory. We also discuss a necessary
addition to the model to address the mirror effects present in our data,
namely the log likelihood ratio transformation of memory strengths
by Glanzer, Hilford, and Maloney (2009). Next, we give a summary
of the 10 datasets that were used in the model fitting along with a
description of how the parameters used in the fitting matched the
experimental manipulations. We then describe how the models were
fit using hierarchical Bayesian methods to get simultaneous estimates
of both subject and group level parameters. We then present the
results of the model fitting procedure along with analyses of the
resulting group and subject level parameters to compare the respective
contributions of the sources of interference.

The Model

We follow the tradition of several memory models and represent
both items and contexts as vectors of features. To simplify de-
scription as much as possible, we define items as single stimuli that
are presented to the participant and the context as a representation
that defines the list episode. We follow several other episodic
memory models in our assumption that item features and context
features are independent of each other (G. D. A. Brown et al.,
2000; Criss & Shiffrin, 2004; Dennis & Humphreys, 2001; Hum-
phreys, Bain, & Pike, 1989; Mensink & Raaijmakers, 1988; Mur-
dock, 1997; Shiffrin & Steyvers, 1997).

Bindings between items and contexts are represented as outer
products of the constituent item and context vectors. Each element
of an outer product is a multiplication of elements in the constit-
uent vectors. A similar way to represent bindings is the convolu-
tion operation, in which the diagonals of the outer product matrix
are summed together, reducing the outer product to a vector (e.g.,
Eich, 1982; Jones & Mewhort, 2007; Murdock, 1982). Both the

1 Another possible assumption that is used by the temporal context
model (Howard & Kahana, 2002) is that context features are the previously
encountered items, causing a high correlation between item features and
context features. However, models that use this assumption of context have
yet to be applied comprehensively to data from recognition memory
paradigms.
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outer product and convolution bindings are similar in that they are
both conjunctive representations of their participating constituents,
rather than linkages between nodes in an associative network.
Conjunctive representations are associations that are represented
much in the same way as individual items are, but bear little
similarity to their constituent item vectors. We have chosen to use
the outer product over the convolution to represent binding be-
cause it is more analytically tractable and simpler, as the additional
summation in the convolution introduces noise into the binding
(Pike, 1984).

Evidence supporting conjunctive representations comes from a
study by Dosher and Rosedale (1989) in which participants studied
triplets of items and were tested on pairs from the triplets in an
associative recognition task. Successful priming was only found
when the entire triplet was completed by the prime, such as if a
triplet ABC was studied and item A preceded the pair BC. Dosher
and Rosedale (1989) found no evidence for priming on partial
matches, such as item A preceding a BF pair trial. Similarly,
Hockley and Cristi (1996b) conducted a judgment-of-frequency
(JOF) task in which both items and pairs were studied and partic-
ipants made JOFs on both studied items and pairs. Some of the
items that were presented alone were constituents of the pairs, for
example, item A presented alone, and also as part of pair A-B.
Hockley and Cristi (1996b) found that the frequency of A had no
influence on the judged frequency of A-B, as if the A representa-
tions and A-B representations did not overlap with each other.

When a list of items is studied, the model stores outer products
of the item and the list context on each trial. These outer products
are then summed together to produce an occurrence matrix M;:

M; = > lienCs® I @)
a

where C denotes a context vector, | denotes an item vector, and the
subscript s refers to the fact that the context vector represents the
study episode. To account for variation in strength of learning, due
either to different rates of presentation, different numbers of pre-
sentations, or differences among participants in their ability to
encode the material, we use a scalar ri,, that is applied to the outer
products as a learning rate parameter.

When a list of pairs are studied for an associative recognition
task, the model stores three-way outer products between the two
items in the pair and the list context as a mode three tensor product.
These tensor products are then summed together to produce the
co-occurrence tensor M

MO:%ra,ﬂ,ccsémaémb (2)

where 1 is the learning rate for associative information. We
would like to emphasize that we use a separate tensor representa-
tion for associative recognition purely for mathematical conve-
nience and are not committed to the idea that the occurrence matrix
and co-occurrence tensor reflect different neurological substrates
or stores. We also make the simplifying assumption that when
participants are studying word pairs in an associative recognition
task the only interitem associations that are formed are among the
pair members (a similar assumption was made by Gillund &
Shiffrin, 1984).

We allotted a separate learning rate parameter for associative
information (r .,c) based on the finding that encoding manipula-

tions produce different effects on item and associative recognition.
For instance, Hockley and Cristi (1996a) found that deep encoding
manipulations that emphasize item information enhance item rec-
ognition but punish associative recognition, whereas deep encod-
ing manipulations that emphasize associative information enhance
both item and associative recognition. Thus, our model allows for
the possibility that encoding strength can be strong in both item
and associative recognition, weak in one task but not the other, and
so forth.

Memory strength is computed by combining the cues available
at retrieval into an outer product and matching it against the
appropriate memory store. In the case of item recognition, this
involves constructing an outer product of the probe cue and the
context cue used at retrieval. This matrix is matched against the
occurrence matrix M;:

s=(C.®1.)-M, 3)
where s is a scalar that represents the memory strength generated
from the global match of the cues against the contents of memory.
The dashes on the context and item vectors are used to indicate that
the item vector representing the probe and the context vector
representing the context at the time of test may not perfectly
resemble the vectors that were used at the time of study. A cue for
a target item may not resemble the vector that was originally stored
because of variation in perceptual processing of the stimulus (e.g.,
McClelland & Chappell, 1998). The context cue used at test may
not resemble the study context because it is either an imperfect
reinstatement of the study context (G. D. A. Brown et al., 2000;
Dennis & Humphreys, 2001) or a context that has drifted from
the original stored study context as a consequence of the events
that have intervened between study and test (Howard & Ka-
hana, 2002; Mensink & Raaijmakers, 1988; Murdock, 1997).
For the present purposes, we are agnostic as to whether the
context cue used at test has merely drifted from its original
representation or was actively reinstated at test. However, it
should also be mentioned that the question of how a context
representation could be reinstated is an unsolved problem in
contextual models of episodic memory.

The equation is the same for associative recognition, except it
involves combining both item cues with the context vector into a
tensor representation and matching it against the co-occurrence
tensor M.. The equation is as follows:

s=(C.®I.®1,) M, 4)

It is common at this stage for the vectors to be generated from
sampling distributions with a finite number of elements. The
number of elements in a vector can be considered a parameter of
the model despite the fact that it contains no obvious psychological
interpretation. When this parameter is free to vary in a model fit,
the model parameters are no longer able to be identified in models
such as REM (Montenegro, Myung, & Pitt, 2014) and BCDMEM
(Myung, Montenegro, & Pitt, 2007). As a consequence, it is
common practice for the vector size parameter in a model to be
fixed to an arbitrary value.

We instead use an approximate analytic solution that speci-
fies the similarities between the vectors without specifying the
content of the vectors themselves. Such an approach is conve-
nient as it allows the different sources of interference in re-
trieval to be parameterized as matches and mismatches among



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

SOURCES OF INTERFERENCE 265

the context and item vectors. The analytic solution is obtained
by decomposing the retrieval equation into each of the compo-
nent matches in a manner similar to that used by Humphreys,
Pike et al. (1989) in their analyses of the global matching
models. An advantage of the analytic solution is that the explicit
likelihood function of the model’s predictions allows the model
to be efficiently fit using Markov chain Monte Carlo (MCMC)
methods.

For the case of item recognition, Equation 3 can be rewritten by
decomposing the occurrence matrix M; into matches among all of
the stored memories. If the probe item is a target item, the equation
is as follows:

s=(C.®1,) [rien(Cs®1)  Self Match
+ D TienCs® 1) Item Noise
iEL,i#t 5)
+ X (C®1 Context Noise (
UEP,u#s
+ > (C®1)] Background Noise
UEP,U#Sz&L

The first term in the right column is the original studied item in
the study list context. The match between this matrix and the
matrix cue can be referred to as the self match (match to both item
and context cues) that is not present in the matching equation for
a lure. The self match determines the difference in the means
between the signal and noise distributions.

The second term in the right column is all of the study list items
that are not the target item. The L subscript refers to the set of all
of the list items. Similarity between the cue item I; and the stored
list items produces item noise. As was previously mentioned, the
majority of the original global matching models tended to only
consider self matches and item noise and never considered the role
of pre-experimental interference. Nonetheless, interference from
pre-experimentally stored memories could be expected to play a
role in memory retrieval, and we consider their possible matches
below.

The third term in the right column is the match of the probe item
to all of its pre-experimentally stored representations. The u sub-
script of the context vector denotes that these stored contexts are
different from the study list context and the U subscript in the sum
refers to the set of all contexts over a lifetime that is not the study
list context. Similarity among the reinstated context cue C,and the
pre-experimental contexts produces context noise at retrieval. The
BCDMEM model can be considered an example of a global
matching model that only considers the self matches and context
noise at retrieval.

The fourth term in the right column is the match of the probe
item to everything else that has been stored in memory. That is, all
memories that mismatch in both item and context information are
contained in this term. If these memories overlap with the matrix
cue they would produce interference that we refer to as back-
ground noise. As we have mentioned previously, this term does
not contribute in most memory models, with the exceptions of the
TODAM (Murdock & Kahana, 1993a, 1993b) and TODAM2
(Murdock, 1997) models along with a variant of the SAM model
presented by Gronlund and Elam (1994). Equation 5 can be re-
written as the match between the test cues and the stored vectors
in memory:

S=liem(C.- Co)(I; - 1) Self Match
+ E Titem(Cs Co) (I 1) Item Noise
iEL,i#t , , 6)
+ 2 (CC(l ) Context Noise (
UEP,U#S , ,
+ > (C-C)(I-)  Background Noise
UEP,U#Sz&L

The three sources of interference (item noise, context noise, and
background noise) are now described as matches and mismatches
between the item and context vectors. These dot products can be
parameterized using normal distributions:

C.-Cy~Normal (g %) Context Match
C.-C,~Normal (jug, %) Context Mismatch
I, -I;~Normal (g, 02)  Item Match
I, -I;~Normal (g, %) Item Mismatch

The means and variances of the distributions of dot products are the
parameters of the model. This approach is similar to the kernel trick
used by support vector machines (Schélkopf & Smola, 2002). The
choice of the normal distribution offers mathematical convenience
for this application by allowing separate specification of the mean
and variance parameters. As we will discuss below, this is neces-
sary to avoid covariances.

The matches in Equation 7 include the match between the test
context and the context of study (context match, indexed by
subscript ss), the match between the test context and contexts
before the study list (context mismatch, subscript su), the match
between the probe cue and its own stored item representation (item
match, subscript tt), and the match between the probe cue and
other items stored in memory (item mismatch, subscript ti).

The distributions of the matches and mismatches from Equation
7 are substituted into the terms for Equation 6 to derive mean and
variance expressions for the signal and noise distributions. Be-
cause each interference term is the multiplication of an item match
or mismatch by a context match or mismatch, and each are
represented by normal distributions, each term is a multiplication
of normal distributions that results in a modified Bessel function of
the third kind with mean and variance as follows:

E(XXp) = pabeo

U]

22, 22, 22
V(X Xp) = pios + poos + o103

Given the large number of list items and nonlist items that are
stored in the occurrence matrix, the final distribution of memory
strength is the sum of many product distributions and the sum is
approximately normal by virtue of the central limit theorem. The
mean and variance for the old and new distributions are as follows:

Poid = Titemtesthtt T Fitem(l = 1) Reshbe + MpLgyty )]
Menew = ritemI Posshti T MLgybhie 9)
0250 = Them(Ra0G + pio’ + 0203 Self Match

Item Noise  (10)
Context Noise

2 2 2 2 2 2 2
+em(l — 1)(|-’*sscti + ot Gsso-ti)

2 2., 22 2 2
+m(piog + neod + 0500
2

+n(pof + piod, + 0lo?) Background Noise
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2 _ .2 2 2 22 2 2
Thew = Fiteml (Msso'ti + W0 T o'sso-ti)
2 2 2 2 2 2
+ m(”‘mctt + et Usuo'tt)

2 2 2 2 2 2
+ n(HSlJO-ti + oy t O-suo-ti)

Item Noise
Context Noise
Background Noise

(1)

where | is the length of the list, m is the number of pre-
experimental memories of the target item, and n is the total number
of background memories. The rows of Equation 10 can be viewed
as the contributions of the self match, item noise, context noise,
and background noise. Equations 10 and 11 are identical with the
exception of the self match variance term that is only in Equation
10 and the fact that item noise is scaled by | — 1 in Equation 11
instead of I.

These equations also reveal the various effects of item noise,
context noise, and background noise: each of them contribute
additional variance to both the old and new distributions. What
disentangles these interference sources is the selective influence
of experimental manipulations. Increases in the number of list
memories | and increases in the learning rate r increase the item
noise, increases in the prior occurrences of the cue m increase
the context noise, and increases in the number of other stored
memories n increases the background noise. All of these ma-
nipulations increase the total variance in a linear fashion.

Some simplifications are made to reduce the number of
parameters and avoid covariances. Specifically, in Equation 6,
one can see that there are multiple item matches and context
matches across the different interference terms. To avoid cova-
riances between these matches, we fix the parameters w,; and
Lo, t0 zero, a simplification that also has the effect of fixing the
mean of the lure distribution at zero. There is precedent for such
an approach, as both the Minerva 2 (Hintzman, 1988) and
TODAM (Murdock, 1982) models have a lure distribution that
is fixed at zero by usage of zero-centered vectors, which en-
sures that the expected match between any two vectors repre-
senting different items is zero.

In addition, we are more interested in the variance contribu-
tion in the context noise and background noise term than we are
in identifying the number of stored memories. For that reason,
we ignore the m term and instead allocate separate context
mismatch variability parameters to high and low frequency
items to reflect the varying degrees of context noise. We denote
the combined influence of mand o2, as parameter p. Addition-
ally, we eliminate the entire background noise term and instead
substitute a separate variance parameter to reflect its contribu-
tion, which we denote as 3. The simplified equations are as
follows:

Mold = FitemMsshhit

o (12)
new

o= riztan(ljdé("tzt + 2ok + olot Self Match
el — 1)(piod + i)
+(pdp + po)
+B Background Noise
(13)

Item Noise
Context Noise

0w = Nl (0505 + 0%05)  Item Noise
+(pép + pod) Context Noise (14)
+B Background Noise

Each interference term in Equations 13 and 14 arises from
combinations of the matches and mismatches of context and item
information. The mean of the target distribution is a multiplication
of the learning rate r;,, the mean of the item match ., and the
mean of the context match . In our fits of the model to data, we
fixed the mean of the item match p,, to one for simplicity.? We
vary the mean context match g across conditions that vary in
retention interval to reflect the loss of study context information
from contextual drift or imperfect reinstatement of the study con-
text. For conditions where testing is either immediate or follows
shortly after the study list, we fix the value of . at one.

All mismatch parameters contribute to the variances of the distri-
butions rather than the means. The self match variability is a function
of the mean and variances of the item and context matches (as we will
see below, appropriate choices of these parameter values can instill
higher variance in the target distribution than the lure distribution).
The item noise term is a function of the number of list items multi-
plied by the variability in the item mismatch o2, which is scaled by
both of the context match parameters. The context noise term is a
function of the variability in the context mismatch p scaled by both of
the item match parameters.

Both the self match and item noise terms are scaled by the learning
rate. Thus, as the encoding strength is increased, both the self match
variability and the item noise are increased. The increase in item noise is
the locus of the list strength effect. In the list strength datasets we will be
considering in this article, two list conditions are used: one where all
items are presented once (the pure weak condition) and one where
half the items are presented four times and half the items are presented
once (the mixed condition). Specification of mixed list interference
requires learning rates for weak and strong items along with separate
item noise terms for each learning rate that are added together. A list
strength effect would be present if performance on the once presented
weak items is worse in the mixed list relative to the pure weak list, and
arises if the item noise from the strong items is sufficiently larger than
the item noise from the weak items. As we will later demonstrate, a
null list strength effect can be predicted if either (a) item noise is
sufficiently low from a low value of the item mismatch parameter crﬁ
or (b) the ratio of background noise to item noise is sufficiently high
such that the strong item interference presents only a negligible
addition to the total interference.

To avoid redundancy in the text, derivations of the distributions
for associative recognition can be found in Appendix A. The same
distributions for the item and context matches and mismatches are
used. The mean and variances of the resulting memory strength
distributions for intact and rearranged pairs are as follows:

— 2
Mint. = NassocMusste

15
Mrearr. = 0 19

21t would be plausible for the mean of the item match to vary across
conditions that vary in stimulus strength. For instance, it is extremely plausible
that the different stimulus classes in our investigation vary in item strength, but
was simpler to assume that all of the differences arose from differences in
learnability.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

SOURCES OF INTERFERENCE 267

> _ 2 2 202, 2 4, 2 4 2 22, 2 4
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+ sl = 2) (e + 0507)
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The interference terms are very similar to the derivations for
item recognition with a few exceptions. The first is that there is no
context noise term; this is because the associative recognition task
involves random pairings of unrelated words and thus, the proba-
bility of having seen a given pair multiple times before the exper-
iment is negligible (this assumption would not apply if previously
associated pairs are used). Second, there is an additional partial
match term for the rearranged pairs in Equation 17. This reflects
the fact that for a rearranged pair A-D, there are two partially
matching pairs in memory: A-B and C-D. Additionally, given that
there are likely to be many more combinations of item-item-
context bindings than single item-context bindings, a separate
background noise term was allotted for the co-occurrence tensor
(Bassoc)- All of the model parameters along with their psycholog-
ical interpretations and experimental manipulations that change
them can be found in Table 1. Next, we describe the likelihood
ratio transformation of memory strengths that is necessary to
capture the full range of mirror effects seen in recognition memory
data.

The Context Mismatch Parameter, the Word
Frequency Effect, and the Likelihood Ratio
Transformation of Memory Strengths

A strong constraint on models of recognition memory is the
word frequency mirror effect, in which low frequency (LF) words
have higher hit rates and lower false alarm rates than high fre-
quency (HF) words.® The mirror effect was described as a chal-
lenge to simple strength models of recognition memory (Glanzer
& Adams, 1985, 1990). As we will demonstrate, this is partially
true. The basic pattern of the mirror effect can be achieved using
the memory strength computation in our model, but there is evi-
dence from two alternative forced choice (2AFC) testing that
suggests a mirror ordering in the means of the distributions, which
requires a likelihood ratio transformation of memory strengths.

The locus of the word frequency effect in the model is the
context mismatch variability parameter p, which primarily contrib-
utes to the context noise term in Equations 13 and 14 for item
recognition. From inspection of the equations, one can see that
context noise is produced by a multiplication of the item match
parameters . and o2 along with the context mismatch variability
parameter p. Critically, when context mismatch variability is zero,
there is no context noise. This reflects the idea that there is no
similarity between the current context and the previously stored
contexts: the current context cue Cy is perfectly able to isolate the
list items from pre-experimentally stored memories. This is an
implicit assumption in the early global matching models that

_ o2 2 22, 2 22, 2 22, 2 22
Orearr. = 2rasoc(2M$Mtt‘Tti + Mgy T OOy T 0'$(Ttt°'ti)

Self Match
Item Noise (16)
Background Noise

Partial Match
Item Noise 17)
Background Noise

assumed that only the list items contributed to interference at
retrieval.

When context mismatch variability is greater than zero, greater
interference arises from items that are more frequently represented
in memory. As a consequence, high frequency words suffer more
interference than low frequency words. Model predictions with
different values of the context mismatch parameter p can be seen
in the middle panel of Figure 2. It is interesting that the model is
able to predict a mirror effect of word frequency: as frequency
increases, hit rates decrease and false alarm rates increase. This is
because context noise, like item noise, is a variance term for both
target and lure items. For a fixed decision criterion, an increase in
variance of both distributions will cause a mirror effect.

Glanzer and Bowles (1976) conducted a thorough test of the
locus of the word frequency effect using 2AFC tests. In a 2AFC
tests, it is assumed that a response criterion for a stimulus is not
used. Instead, the choice is selected that is furthest on the decision
axis (T. D. Wickens, 2002). Glanzer and Bowles (1976) manipu-
lated the composition of the choices on 2AFC tests, using all
possible combinations of old and new items such as LF-old and
LF-new trials (LO-LN), LF-old and HF-new trials (LO-HN), HF-
old and LF-new trials (HO-LN), and HF-old and HF-new trials
(HO-HN). The mirror effect was obtained in all cases, and the
ordering of the probability of correct choice was as follows:
LO-LN > LO-HN =~ HO-LN > HO-HN. While the occurrence of
the mirror effect in 2AFC testing is challenging to criterion shift
accounts of the mirror effect (e.g., Gillund & Shiffrin, 1984),
inspection of the top right panel of Figure 2 reveals that the
variance account in our model is capable of addressing this pattern
(LO-LN > LO-HN ~ HO-LN > HO-HN).

However, there two more trial types that the variance account is
unable to address. Both of these trial types can be considered null
comparisons because they are not valid trials with one correct choice
and one incorrect choice. In both types of trials, one word is LF and
the other is HF, but in one there are two targets (LO-HO) and in
another there are two lures (HN-LN). Surprisingly, in the target trials,
the LF word is chosen more often (p(LO, HO) > .5) but in the lure
trials, the HF word is chosen more often (p(HN, LN) > .5). One can
see that in Figure 2, the variances account fails to produce choice
probabilities that are greater than .5 for the null comparison trials.
Glanzer and Bowles (1976) noted that what is necessary is a mirror
ordering arrangement of the means of the signal and noise distribu-
tions, such as LN < HN < HO < LO. Mirror arrangements of the

3 A mirror effect refers to any manipulation that exerts opposite effects
on the hit rates and false alarm rates (Glanzer & Adams, 1985).
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Table 1

Description of Each of the Model’s Parameters, Including Their Boundaries and Which Conditions They Change

Param Bounds Description

Fiterm T assoc 0:1 Learning rates for items and associations. Increase with study time or repetitions.

s 0:1 Context match mean: Matching strength of test context cue to stored context. Contributes to the mean of the target
distribution. Decreases with study-test delay.

gft 0: o Item match variability: Variability of the match of the item cue to the stored item. Increases the variability of the target
distribution relative to the lure distribution.

()'; 0: o Context match variability: Variability of the match of the context cue to the stored context. Increases the variability of the
target distribution relative to the lure distribution.

p 0: o Context mismatch variability: Contributes to the amount of context noise in the model. Expected to vary with word
frequency and is zero for items not seen in prior contexts.

gﬁ 0: o Item mismatch variability: Contributes to the amount of item noise in the model. Magnifies effects of list length and list
strength manipulations. Varies by stimulus class.

Bitern Bassoc 0: o Background noise for items and associations. Obscures effects of list length/list strength on performance. Varies by
stimulus class.

[} —o0r 00 Response criterion; O represents an unbiased criterion.

underlying distributions can be produced using a log likelihood ratio
transformation of the memory strengths.

The Log Likelihood Ratio Transformation

Several current models of recognition memory use likelihood
ratios as the basis of a recognition memory decision to produce the
mirror effect (Dennis & Humphreys, 2001; Glanzer & Adams,
1990; Glanzer, Adams, lverson, & Kim, 1993; McClelland &

Chappell, 1998; Shiffrin & Steyvers, 1997). In log likelihood ratio
models, decisions are not made on the basis of memory strength,
but are instead made on the basis of a ratio of the densities of the
signal and noise distributions. To understand how the mirror effect
is derived from a likelihood ratio, take a point on the x-axis of the
signal and noise distributions in the top left panel of Figure 2.
Compare the relative heights of the targets and lures of the HF
distributions at that point: that ratio is the likelihood ratio for the
stimulus that elicited that value of memory strength. On the same

Word Frequency Effects

Signal and Noise Distributions Context Mismatch Parameter 2AFC
T T T T 1.0 T T T T 1.0 T T T T T
— @ ;
HF Words o8k ] o8l | comparisons |
= |
= \ . |
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Figure 2. Graph displaying how changes in the context mismatch variability can account for the word
frequency mirror effect using both the raw memory strengths (top row) and after the log likelihood ratio
transformation (bottom). In the left column are signal and noise distributions for low (p = .025) and high (p =
.4) values of the context mismatch variability parameter, which correspond to low and high frequency words. In
the middle column are predicted hit and false alarm rates for values of the context mismatch variability parameter
ranging from .025 to 1.0. In the right column are the data from the 2AFC paradigm used by Glanzer and Bowles
(1976) along with model predictions (LF: p = .05; HF: p = .4). All other model parameters are as follows: list
length of 30 items, Fiem = .4, iy = 1, s = 1, 05 = .025, 0% = .075, 03 = .002, Birem = .1. See the online article

for the color version of this figure.
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point on the x-axis, consider the LF distributions. Note that in the
case of target items, the density of the target distribution greatly
exceeds the density of the lure distribution because of the lower
overlap of the distributions, producing higher likelihood ratios. LF
words have lower overlap among the target and lure distributions
than HF words, producing higher likelihood ratios and increasing
their hit rate. The opposite is the case for lures, in that there is
greater lure-to-target density for LF words, producing lower like-
lihood ratios and a lower false alarm rate relative to HF words. A
psychological interpretation of the likelihood ratio transformation
is that memory strength is not considered alone, but is instead
considered along with the knowledge about the memorability of
the stimlus (similar to the account proposed by J. Brown, Lewis, &
Monk, 1977). As we will see, the expected memorabilities need
not correspond perfectly to the actual memory strength distribu-
tions.

The mirror effect has been demonstrated to be a regularity of the
likelihood ratio transformation (Glanzer et al., 1993, 2009). There
are other advantages to the likelihood ratio transformation, such as
the concentering of the likelihood ratio distributions in response to
manipulations that decrease performance (Glanzer, Adams, &
Iverson, 1991; Hilford, Glanzer, & Kim, 1997; Kim & Glanzer,
1993, 1995), shorter zROC lengths for conditions of stronger
performance (Glanzer et al., 2009; Stretch & Wixted, 1998a), as
well as higher variances for distributions that are further from the
criterion (as measured by old-old and new-new zROC slopes;
DeCarlo, 2007; Glanzer et al., 2009). Additional discussion on
data that have supported or challenged likelihood ratio models can
be found in the General Discussion.

We have used analytic solutions for the log likelihood ratio
transformation that were developed by Glanzer et al. (2009) to be
used with unequal variance normal signal detection models. After
the transformation has been applied, it results in log likelihood
ratio distributions that are noncentral chisquare in shape. We have
had to modify the equations to consider cases in which the model
has access to incomplete information about the study episode. For
instance, consider a case in which items were either studied once
(weak) or four times (strong). During the test phase, participants
are tested on weak and strong targets in addition to lures. This
leads to three memory strength distributions: one for lures, one for
weak targets, and one for strong targets. If it is assumed that during
weak target trials participants calculate the likelihood ratio using
the weak target distribution as reference, the model has already
presupposed memory of the test stimulus. Instead, under condi-
tions in which mixed lists of items are studied, the expected
strength in the likelihood ratio calculation is a distribution that
reflects the average of the learning rate parameters corresponding
to the weak and strong items.* Expected strengths were used in the
likelihood calculations in the BCDMEM model (Dennis & Hum-
phreys, 2001; Starns, White, & Ratcliff, 2010). The modified
equation for the likelihood ratio transformation can be found in
Appendix B. For all other parameter variations outside of the
learning rate differences in mixed strength study lists, the expected
parameter values are identical to the actual parameter values of the
memory strength distributions.

Predictions of the log likelihood ratio transformation can be
seen in the bottom row of Figure 2. The left panel reveals that the
transformation correctly produces the mirror ordering of the dis-
tributions (LN > HN > HO > LO). The model produces patterns

that are quite similar to the variance account, but inspection of the
2AFC predictions in the right panel of Figure 2 reveals that the
model is correctly able to predict null comparisons that are quite
close to the experimental data (p(LO, HO) and p(HN, LN) > .5).
The log likelihood ratio transformation is applied to all model
predictions from this point on in the article.

Unequal Variance Between the Target and Lure
Distributions of Memory Strength

The slope of the z-transformed ROC is almost uniformly less
than one in the recognition memory literature (Egan, 1958; Glan-
zer, Kim, Hilford, & Adams, 1999; Heathcote, 2003; Ratcliff,
Sheu, & Gronlund, 1992; Ratcliff, McKoon, & Tindall, 1994).
Within an SDT model, the common interpretation is the variability
of the target distribution is greater than the lure distribution. When
the distributions are normal in shape, the slope is the ratio of SDs
GnsA/GoId'

How can unequal variance be produced by our model? The
variances of the target and lure distributions in item recognition are
nearly identical except that for the case of targets, there are | — 1
items in the item noise term and an additional self match term. If
the self match variability exceeds the item noise for a single item
(before being scaled by 1), then targets will exhibit higher vari-
ability than lures. The model can accomplish this with sufficient
values of either the item match variability (aﬁ) or context match
variability (cré). The effects of these variables can be seen in
Figure 3 for both item recognition (top) and associative recogni-
tion (bottom): both the item match variability parameter Utzt and
context match variability parameter crés were set to .02 and sepa-
rately incremented to higher values. As the values of these param-
eters are increased, one can see that the ratio of SDs decreases.

Why do item and context match variabilities produce unequal
variance between the target and lure distributions? One might be
inclined to think that the target item was seen in the list context, so
variation in how the item was processed or variation in the match
of the test context to the stored context should affect targets but not
lures. However, both of these factors also affect the degree of
match to previously stored memories. Inspection of Equations 13
and 14 reveals that the item mismatch in the item noise term is
scaled by the context match and the context mismatch in the
context noise term is scaled by the item match. Unequal variance
is produced because in the self match term of Equation 13, there
are more nonzero means contributing to the variance calculation
(the learning rate r, the item match p,,, and the context match pg).
Thus, the simple answer is that the variability of the target distri-
bution increases naturally with its mean; however, the magnitude
of this increase is modulated by the item and context match
variability parameters. If the item and context match variability
parameters exceed the item and context mismatch variability pa-
rameters, unequal variance that resembles the magnitude found in
recognition memory experiments can be produced. As the item and
context matching strengths decrease to zero, the ratio of SDs

4 Another case where expected strengths would be used is for modeling
the effects of serial position. Items from different serial positions have
different study-test lags, suggesting different values of the mean context
match . The expected context match at test could be constructed from
the average of the context match parameters for each serial position.
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Figure 3. Graph displaying the effects of changes on the item match and context match variability parameters
(crfI and c;). Both parameters were initially set to .001. As both parameters are increased, the variability of the
target distribution increases more than the variability of the lure distribution. Other parameters of the model were
set as follows: list length = 20, Miem = 1, fasoe = L bt = L s = 1, ofi =.002,p = .1, Biten = -15, Basoc =
.45. See the online article for the color version of this figure.

should approach 1. Ratcliff, McKoon, and Tindall (1994) found
that with very low study times, the slope of the zROC is very close
to 1. We constrain the values that these two parameters take by
including ROC data, namely the dataset of DeCarlo (2007), in our
model fit.

Much of the discussion about the source of unequal variance in
recognition memory has focused on the hypothesis of Wixted
(2007) that unequal variance arises because of variability in the
strength of learning. That is, some items on the study list may be
encoded with more strength than others, producing an additional
source of variability for target items. The variability in learning
strength hypothesis has been tested recently with mixed results
(Koen & Yonelinas, 2010, 2013; Starns, Rotello, & Ratcliff, 2012;
Jang, Mickes, & Wixted, 2012). We would like to note that
variability in the item match (that could arise from factors such as
variability in the perceptual or semantic processing of the probe
item) along with variability in the context match (that could arise
from noise in either the contextual reinstatement process or the
contextual drift process) are plausible contenders for sources of
unequal variance that have not received attention in the literature.
We do not mean this to imply that variability in the strength of
learning is not responsible for unequal variance, but merely that
unequal variance may reflect variability in several processes used
at both encoding and retrieval.

The Item Mismatch Variability Parameter and List
Length and List Strength Predictions

As mentioned above, global matching models that only consider
the role of item noise at retrieval predict detrimental effects of list
length and list strength on recognition memory performance. From

inspection of the item noise terms for item recognition (Equations
13 and 14) and associative recognition (Equations 16 and 17), one
can see that item noise is produced by a multiplication of the item
mismatch variability parameter crﬁ, the context mismatch variabil-
ity parameter O'ZS, the learning rate r, and the number of items or
pairs on the list . The most critical of these parameters is the item
mismatch variability. If this is set to zero, the entire item noise
term is zero and no effect of list length or list strength is predicted.
For positive values of the item mismatch variability parameter,
increases in the number of list items | or the learning rate r increase
the total item noise variance, producing poorer performance in
conditions of higher list length or list strength, respectively.

These predictions can be seen in Figure 4 for both item recog-
nition (top) and associative recognition (bottom). Depicted are two
demonstrations for three different values of the item mismatch
variability parameter o: 0, .02, and .04. The first demonstration is
of a list length manipulation in which list length is varied between
1 and 80 items or pairs. Item noise increases linearly with increases
in the list length for positive values of item mismatch variability.
Consequently, performance decreases rapidly with increases in list
length. When there is no item mismatch variability, item noise is
zero and no effect of list length is predicted.

The list strength paradigm was simulated by using a 30 item list
in item recognition and 30 pairs in associative recognition. Half of
the items are baseline items that were studied with learning rate
r = 1.0. The other half are interference items and were studied
with learning rates varying between .05 and 2.5 and performance
was assessed on the baseline items. As mentioned previously, for
mixed lists of strong and weak items, the likelihood ratio compu-
tation compares items to a mixed distribution of strong and weak
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Figure 4. Graph displaying demonstrations of the effects of the item mismatch variability parameter on both

item recognition (top row) and associative recognition

(bottom row), which controls the amount of item noise

in the model. Depicted are simulations of a list length paradigm (left) and a list strength paradigm (middle
column: Hit rate (HR) and false alarm rate (FAR) predictions; right column: d’ predictions). In the list length
paradigm, the number of study list items was manipulated between 1 and 80. In the list strength paradigm, 30
items were studied, half were baseline pairs studied with learning rate r;.,, = 1.0 and the other half were
interference items studied with r;..,, ranging between .05 and 2.5. The other parameters of the model were set

as follows: Mem =1, Taee = L, e = 1, g = 1, 0% =
the online article for the color version of this figure.

items. Thus, as the strength of the interference items is increased,
the strength of the mixed distribution increases. This increase in
the expected memorability of test items decreases the hit rates and
false alarm rates of the nonstrengthened items. This allows the
model to predict the strength based mirror effect in item and
associative recognition, which is where strengthening a set of
items increases the hit rate of the strengthened items and simulta-
neously decreases the false alarm rate (Hirshman, 1995; Hockley
& Niewiadomski, 2007; Stretch & Wixted, 1998b).

Because of the decrease in hit rates and false alarm rates that
occur with increases in strength, the list strength effect can be more
easily observed by observing how d’ changes as the strength of the
interference items and pairs is increased. When item mismatch
variability is zero, there is no item noise and the strength of the
interference items or pairs has no impact on performance. For
positive values of item mismatch variability, performance de-
grades quickly as the strength of the interference items and pairs is
increased.®

One may also note that effects of both list length and list
strength are smaller in associative recognition than in item recog-
nition. That is because associative recognition involves the multi-
plication of two items instead of one, meaning that the item
mismatch variability parameter o2 is squared. When the values are
less than one, ay’s influence on item noise will be larger for item

025, 0% = .075, p = .1, Bitem = .1, and Baeerc = .1. See

recognition than for associative recognition. However, it is not the
case that the item mismatch variability parameter has no visible
effect on associative recognition predictions.

A number of researchers have conducted investigations using
mixed lists of strong and weak pairs in associative recognition. On
the test lists, rearranged pairs that came from both strong and weak
pairs were presented and the false alarm rates were compared. A
majority of investigations have found no difference between weak
and strong rearranged pairs (e.g., Buchler, Light, & Reder, 2008;
Kelley & Wixted, 2001). As initially noted by Osth and Dennis
(2014), the degree to which false alarm rates increase with strength
in a mixed list is a consequence of item noise. To understand why,
consider the partial match term in the equation for o7, :

2 2 2 2 2 22 2 22, 2 22
zrassoc(zﬂssl*tto'ti + M0y T OOy T O'sso'tt‘fti)

5 One should note that throughout this article, we follow convention in
the recognition memory literature by visualizing performance in the model
and the data using equal variance d’ measures. When there is unequal
variance between the signal and noise distributions, changes in bias result
in changes in d'. Inspection of Figure 4 reveals that when the item
mismatch variability parameter is zero, d’ improves with list strength. This
is because of the fact that both the log likelihood ratio distributions of
targets and lures are shifted downward as list strength is increased.
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When item mismatch variability is zero, the interference from
the two partial matches A-B and C-D to a rearranged pair A-D
reduces to zero. When it is positive, the partial match term scales
by the learning rate r ..., meaning that the two stored pairs exert
greater interference on a rearranged pair cue as their strength is
increased. This means that for a mixed list of strong and weak
pairs, strong rearranged pairs suffer greater partial match interfer-
ence when item mismatch variability is high.

The effect of item mismatch variability on mixed lists of strong
and weak pairs can be seen in Figure 5. Three different levels of
the parameter were compared (cﬁ = 0, .015, .03) for a mixed list
with 15 weak pairs studied with a learning rate r .., = 1.0 and 15
strong pairs were studied with r .. = 2.5. When item mismatch
variability is zero, false alarm rates are equivalent between weak
and strong rearranged pairs. However, as the item mismatch vari-
ability is increased, false alarm rates are considerably higher for
strong rearranged pairs than for weak rearranged pairs. As we will
discuss later, most investigations have found equivalent false
alarm rates between weak and strong rearranged pairs (Cleary,
Curran, & Greene, 2001; Kelley & Wixted, 2001; Osth & Dennis,
2014).

Although null effects of list strength (e.g., Ratcliff, Clark, &
Shiffrin, 1990) and list length (e.g., Dennis et al., 2008) are
commonly found with word stimuli, novel nonlinguistic stimuli
such as fractal and face images have been found to be susceptible
to effects of both list length (Kinnell & Dennis, 2012) and list
strength (Osth et al., 2014; Norman, Tepe, Nyhus, & Curran,
2008). As we will demonstrate in the fits to our datasets, this can
be accommodated by allotting separate item mismatch parameters
to each stimulus class to reflect the idea that the item representa-
tions of each stimulus class may vary in their degree of interitem
similarity. Modeling the complete interference contributions be-
tween all the stimulus classes would require a matrix of item
mismatch variability parameters that reflects item similarity within
a given stimulus class and between the different stimulus classes.
However, given that in all of the datasets included in our model fit
only test one stimulus class, we simplify treatment by only con-
sidering within-class interference.

Background Noise

From our description of the item mismatch variability parame-
ter, it might seem as if large values of that parameter will always
produce positive effects of list length and list strength. However,
this is not the case. As noted by Murdock and Kahana (1993a,
1993Db), a large contribution from pre-experimental memories can
be sufficient to drown out differences between two conditions that
vary in their level of item noise, such as differences in list length
or list strength.

The effect of the background noise parameter on list length and
list strength predictions can be seen in Figure 6. The item mis-
match variability parameter was set at .03, which was seen to
produce relatively large item noise effects in Figure 4. Background
noise () was varied for both item and associative recognition. The
most obvious effect is that background noise degrades perfor-
mance. However, as background noise increases, the increases in
item noise with list length and list strength are relatively small
compared with the interference already present in memory, and
one can see that performance decreases at a smaller rate as list
length or list strength are increased when the background noise
present in memory is high.

Although we have simplified the background noise contribution
to a single parameter, the original parameterization describes it as
follows:

2 2 2 2 2 2
n(l*suo'ti + oy + Usuo-ti)

where n is the number of memories of the given stimulus class.
Specifically, one can see that both n and the item mismatch
variability parameter oﬁ determine the total background noise.
Given that the item mismatch variability parameter varies across
stimulus classes and that each stimulus class likely varies in its
number of entries in memory, it is also reasonable for the back-
ground noise to vary across stimulus classes. In our fits, B varies
across stimulus classes but is constant across all other manipula-
tions.

The demonstration that background noise can mask effects of
list length and list strength is critical to our understanding of the

Associative Recognition: Mixed List Predictions
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Figure 5. Graph displaying demonstrations of the effects of the item mismatch variability parameter ((rfi =
0, .015, .03) on a mixed list of weak and strong pairs in associative recognition. Parameters were as follows: 15
weak pairs encoded with r,,. = 1.0, 15 strong pairs encoded With rc = 2.5, py = 1, pg = 1, 0% =
.025, cr§ﬁ = .075, and B.soc = -1. See the online article for the color version of this figure.
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this figure.

sources of interference in recognition memory. Dennis and col-
leagues have previously argued that null effects of list length and
list strength support the idea that there is no item noise in memory
(Dennis & Humphreys, 2001; Osth & Dennis, 2014), whereas the
presence of a significant contribution of background noise is a
plausible alternative. Thus, null effects of list length and list
strength do not necessitate a pure context noise model with no item
noise. The model fits to a large number of experimental datasets
allow us to distinguish between these possibilities.

The Model Fit

As previously mentioned, multiple possibilities in the parameter
values can be responsible for recognition memory being impervi-
ous to manipulations of list length and list strength on recognition
memory performance for words. For instance, null effects of list
length and list strength could be predicted by a model with context
noise as the sole source of interference (like in the BCDMEM
model) or they could be predicted with a high ratio of background
noise to item noise (like in the TODAM models). Similarly,
overall levels of performance can reflect a strong degree of learn-
ing or low contributions of interference. The fact that multiple
parameter combinations can qualitatively predict similar outcomes
implies that the resulting parameter estimates of the model will not

be independent but correlated with each other (e.g., Turner, Sed-
erberg, Brown, & Steyvers, 2013). Thus, the modeling exercise
requires a robust model fitting procedure.

To properly measure the parameters required to estimate the
interference contributions to recognition memory, we fit the model
within a hierarchical Bayesian framework. The virtues of hierar-
chical Bayesian methods for fitting cognitive models (Lee, 2008,
2011; Lee & Vanpaemel, 2008; Pooley, Lee, & Shankle, 2011;
Rouder & Lu, 2005; Shiffrin, Lee, Kim, & Wagenmakers, 2008;
Vandekerckhove, Tuerlinckx, & Lee, 2011) and in fitting data
from recognition memory paradigms (Dennis et al., 2008; Morey,
Pratte, & Rouder, 2008; Pratte & Rouder, 2011; Pratte, Rouder, &
Morey, 2010; Turner, Dennis, & Van Zandt, 2013) have been well
established. Although traditional techniques such as minimizing
the sum of squared deviations between the model’s predictions and
the data (approximate least squares) only provide point estimates
for the model’s parameters, one of the advantages of Bayesian
analyses is that they quantify the uncertainty in the parameter
estimates of the model as probability distributions over each pa-
rameter which are referred to as posterior distributions. Given that
we are interested in quantifying the respective contributions of the
interference contributions, properly measuring the uncertainty in
these estimates is necessary.
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Additionally, although it is common for modelers to aggregate
across subjects and fit psychological models to only the group
data, one problem is that fitting group estimates of the data often
provides different parameter estimates than when the fits to the
individual participants are averaged together (Estes & Maddox,
2005). Bayesian analyses can overcome this problem by usage of
hierarchical models that jointly estimate the parameters of the
group and the individual participants. This is accomplished by
establishing hyper parametersthat represent the group level param-
eters in combination with individual participant parameters. Each
relevant model parameter (such asr, crﬁ, B, etc.) has its own set of
hyperparameters, namely a mean and variance or precision param-
eters that specify the prior distribution across all participants that
each individual participant’s parameters are sampled from. A
hierarchical fit provides posterior distributions on each model
parameter for each participant along with posterior distributions
for the hyperparameters of each model parameter that reflect the
group-level parameters. Fitting individual participants in a model-
ing exercise such as this is critical, as there may be significant
individual differences among participants in the magnitudes of the
respective interference contributions.

As was previously mentioned, each interference source in-
creases the variance of both the signal and noise distributions. To
properly constrain the model parameters, it is required to include
all of the relevant manipulations that affect the parameters of the
model. It was for this reason that we included a large number of
datasets, which include manipulations of list length, list strength,
and also include mixed lists of strong and weak pairs in the
associative recognition task, all of which constrain the estimates of
item noise. We have additionally included two experiments that
include manipulations of word frequency, which constrain the
context noise parameter. Background noise is the remaining inter-
ference in the memory system and provides a constant source of
noise that is unaffected by the experimental manipulations. In the
next section, we will discuss the 10 recognition memory datasets
that are included in the model fit.

Datasets Included in the Modédl Fit

Rather than fit each dataset separately, we imposed significant
constraint on the model by fitting all of the datasets simultaneously

and constrained parameters across datasets. An advantage of the
hierarchical Bayesian procedure is that individual participant pa-
rameters can be modeled while simultaneously constraining across
different experiments or datasets by restricting the hyperparam-
eters to be the same across datasets.

Hyperparameters were only allowed to vary across datasets
where appropriate. For instance, the item mismatch variability
parameter o varies across stimulus classes, meaning that the
Dennis et al. (2008) dataset, which used words as stimuli, receives
a different hyperdistribution for o2 than for a dataset that used
fractals as stimuli (such as Kinnell & Dennis, 2012, Experiment 2).
However, other datasets that used words, such as the Osth and
Dennis (2014) and the DeCarlo (2007) studies, share the same oﬁ
hyperdistribution that corresponds to word stimuli.

Here, we describe the datasets included in our model fit, their
findings, the relevant hyperparameters they constrain, and briefly
review the surrounding literature. A summary of all of the datasets
used in the fitting can be seen in Table 2.

TheROC in item recognition. As described earlier, the slope
of the z-transformed ROC is almost uniformly less than one in the
recognition memory literature (Egan, 1958; Glanzer et al., 1999;
Heathcote, 2003; Ratcliff et al., 1992, 1994), a finding that has
been used to advocate for the unequal variance signal detection
model (Wixted, 2007). The ubiquity of the unequal variance in-
terpretation of zZROC slopes is further supported by evidence from
response time models. Starns, Ratcliff, and McKoon (2012) found
that the Ratcliff diffusion model (Ratcliff, 1978; Ratcliff, Van
Zandt, & McKoon, 1999) could only fit the zROC slopes from a
binary ROC paradigm (in which participants give yes or no re-
sponses, but the relative proportions of targets and lures are ma-
nipulated across conditions) if the variability of the drift rates for
targets was larger than the variability for lures. More recently,
Starns and Ratcliff (2014) fit a large number of recognition mem-
ory datasets that lacked complete ROC functions and found that a
diffusion model with higher drift rate variability for targets re-
ceived better support than a diffusion model with equal variance
across the drift rates for targets and lures.

As mentioned previously, unequal variance between the target
and lure distributions can be produced in our model by choosing
the appropriate values of the item and context match variability

Table 2
Datasets Included in the Hierarchical Bayesian Fit to the Data
Dataset Task Stim. N Resp. Manip.
DC - Ex 1A IR Words 72 6 con Word frequency: LF and HF
DLK IR Words 48 YN List length: 20 vs. 80 items Word frequency: LF and HF Unfilled vs. filled delay
KD - Ex 1 AR Words 28 YN List length: 24 vs. 96 pairs
KD - Ex 2 IR Faces 39 YN List length: 20 vs. 80 items
KD - Ex 3 IR Fractals 32 YN Same as above
KD - Ex 4 IR Scenes 40 YN Same as above
ODK - Ex 1 IR Fractals 88 YN List strength: 32 items 1x vs. 16 items 1 x 16 items 4x
ODK - Ex 2 IR Faces 96 YN Same as above
ODK - Ex 3 IR Scenes 71 YN Same as above
OD-Ex1 AR Words 80 YN List strength: 32 pairs 1x vs. 16 pairs 1 x 16 pairs 4x;

Note. Stim. = stimulus; N = number of participants; resp. = response type collected in the experiment; manip. = manipulations used in the experiment;
DC = DeCarlo (2007); DLK = Dennis, Lee, and Kinnell (2008); KD = Kinnell and Dennis (2012); ODK = Osth, Dennis, and Kinnell (2014); OD =
Osth and Dennis (2014); IR = item recognition; AR = associative recognition; LF = low-frequency; HF = high-frequency; YN = yes/no recognition;

6con = 6 point confidence rating scale.
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parameters o and %, However, many of the datasets listed below
lack the necessary data to constrain these parameters, in that they
did not include manipulations of target versus lure proportions or
confidence ratings. It was for this reason that we additionally
selected a relatively simple ROC experiment to constrain these
parameters, namely Experiment 1A of DeCarlo (2007). This ex-
periment tested native English participants for item recognition of
both high and low frequency words using six point confidence
ratings. To model this dataset, five hyperparameters were selected
for the response criteria required to make the confidence ratings
that were not used in any of the other datasets. Differences be-
tween the word frequency classes were modeled by usage of the
context mismatch variability parameter p: separate hyperparam-
eters were used for both low and high frequency words. The
presentation time for the stimuli was lower than for the other
datasets (1 s per stimulus), so this dataset was allotted its own
hyperparameters for the learning rate r. Given that this experiment
used immediate testing, the mean context match parameter p.o was
fixed at 1.

The list length paradigm. Manipulations of the length of a
study list have been a large constraint on models of memory,
including models of recognition memory (Chappell & Humphreys,
1994; Clark & Gronlund, 1996; Dennis & Humphreys, 2001;
Gillund & Shiffrin, 1984; Johns, Jones, & Mewhort, 2012; Mc-
Clelland & Chappell, 1998; Shiffrin et al., 1990; Shiffrin &
Steyvers, 1997), free recall (G. D. A. Brown, Neath, & Chater,
2007; Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, &
Usher, 2005; Farrell, 2012; Polyn, Norman, & Kahana, 2009;
Raaijmakers & Shiffrin, 1981; Sederberg, Howard, & Kahana,
2008), and serial recall (Botvinick & Plaut, 2006; G. D. A. Brown
et al., 2000; Henson, 1998; Farrell, 2012; Lewandowsky & Mur-
dock, 1989). In recognition memory, the earliest demonstration of
the detrimental effect of list length on recognition memory per-
formance was found by Strong (1912). In the several decades that
followed, the list length effect was replicated extensively in both
item (Bowles & Glanzer, 1983; Cary & Reder, 2003; Gillund &
Shiffrin, 1984; Gronlund & Elam, 1994; Murnane & Shiffrin,
1991a; Nobel & Shiffrin, 2001; Ratcliff & Murdock, 1976; Un-
derwood, 1978) and associative recognition (Clark & Hori, 1995;
Nobel & Shiffrin, 2001) and has been used as support for pure item
noise models of recognition memory (Clark & Gronlund, 1996;
Gillund & Shiffrin, 1984).

However, as noted by Dennis and Humphreys (2001), a number of
confounds exist in the previously published list length designs that
may be artifactually causing a list length effect in recognition memory
performance that we will briefly summarize here. First, if participants
are tested immediately after completion of the study list, the average
retention interval for items in the long list is longer than that of the
short list. This confound can be overcome by equating the retention
intervals across the two list length conditions by using a period of
filler activity after the short study list is complete. Another confound
is the fact that when immediate testing is used after a long list,
participants may be more inclined to use a context representation that
strongly favors the end-of-list items, rather than reinstating a list-wide
context, a confound that can be overcome by having participants
partake in additional filler task activity. An additional confound is that
attention is likely to decrease through the duration of the study list,
producing weaker encoding for the late list items relative to the early

list items, a point which was first raised by Underwood (1978). This
confound can be remedied by comparing items from equivalent serial
positions from both the short and long list conditions.

When all of these confounds have been controlled, the investiga-
tions by Dennis and colleagues have found no effect of list length on
performance when words are used as stimuli both in item recognition
(Dennis & Humphreys, 2001; Dennis et al., 2008; Kinnell & Dennis,
2011) and associative recognition (Kinnell & Dennis, 2012, Experi-
ment 1). Other investigations have found no effect of list length on
performance in item recognition. Schulman (1974) found no differ-
ence in 2AFC recognition performance between study lists of lengths
25, 50, and 100 items when the retention intervals and test positions
were equated across the conditions. Jang and Huber (2008) found no
difference between list lengths of 6 and 24 items in a 2AFC recog-
nition task that interpolated between two lists that were later tested for
free recall. Murnane and Shiffrin (1991a, Experiment 3) found no
effect of list length on yes/no recognition performance when study-
test lag was controlled.

Although some might conclude that the controls used in this list
length paradigms might be sufficient to eliminate any effect of list
length in recognition memory performance, this is not the case.
Kinnell and Dennis (2012) tested novel nonlinguistic stimuli, specif-
ically images of fractals, faces, and natural scenes, in single item
recognition using the same controls used in the other investigations.
Significant effects of list length were found for fractals and faces but
no effect of list length was found for natural scenes. Kinnell and
Dennis (2012) posited that the differences associated with the differ-
ent stimulus classes may be attributed to different levels of item noise,
with word stimuli and natural scenes being exempt from item noise at
retrieval whereas faces and fractals suffer from item noise, possibly
because of having more distributed item representations (we return to
the issue of how different stimulus classes can suffer from different
degrees of item noise in the General Discussion).

Included in the model fit are five experiments using the list
length paradigm: the dataset of Dennis et al. (2008) along with the
four experiments by Kinnell and Dennis (2012). All of the exper-
iments use two list length conditions that all use a 1:4 list length ratio
from the short list to the long list. Additionally, all of the experiments only
test the first 20 items (first 32 pairs for the associative recognition
experiment) on the study list to make the test lists across the two
list length conditions comparable. The five datasets comprise all of
the stimuli that are used in the model fit: words are used in the
study of Dennis et al. (2008) and the associative recognition
experiment by Kinnell and Dennis (2012, Experiment 1). Faces,
fractals, and natural scenes were compared using separate exper-
iments by Kinnell and Dennis (2012, Experiments 2—4, respec-
tively).

The dataset of Dennis et al. (2008) was somewhat more extensive
than the other datasets, as it also manipulated the length of a post
study list delay period in addition to two different levels of word
frequency. In the unfilled delay condition, recognition testing began
immediately after the long list and 3 min after the end of the short list.
In the filler condition, in contrast, recognition testing began an addi-
tional 8 min after the end of the long list and 11 min after the end of
the short list. To capture the different levels of performance for each
delay, separate hyperparameters for the mean context strength param-
eter o Were allocated: one for the long list in the unfilled condition
to allow for the possibility of poor contextual reinstatement, and
another for both list length conditions in the filler task condition. To
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capture the effects of word frequency, the same context mismatch
variability hyperparameters used in the fit to the dataset of DeCarlo
(2007) were used to capture the effects of low and high frequency
words in this dataset.

To test for the hypothesis that the different stimulus classes are
subject to different degrees of item noise, separate hyperparam-
eters for the item mismatch variability parameter o were allowed
for each stimulus class. Osth et al. (2014) argued that the detrimental
effects of list length and list strength observed with specific nonlin-
guistic stimuli are too small to be accommodated by a pure item noise
model and that these effects may be being mitigated by background
noise from the memory system. For this reason, different hyperpa-
rameters for the background noise parameter 3., Were allowed for
each stimulus class. Additionally, separate background noise hyper-
parameters were allowed for word pairs in associative recognition to
allow for the possibility that many more interitem bindings are being
stored in the co-occurrence tensor than item-context bindings in the
occurrence matrix. Because the experiments of Kinnell and Dennis
(2012) also used filler tasks that are of the same length as the filler
task of Dennis et al. (2008), the same hyperparameters for the mean
context strength were shared across all of these experiments.

The list strength paradigm. The null list strength effect was
initially discovered by Ratcliff et al. (1990), who found that recogni-
tion performance for weak items was not harmed when they were
accompanied by strong items on a study list and that strong items did
not benefit from being accompanied by weak items relative to strong
items. The null list strength effect was found in all seven of their
experiments, regardless of whether the strengthening occurred via
massed study, massed repetitions, or spaced repetitions. The list
strength paradigm was extensively revisited in the two decades to
follow, resulting in several replications of the null list strength effect
in item recognition (Hirshman, 1995; Kahana, Rizzuto, & Schneider,
2005; Murnane & Shiffrin, 1991a, 1991b; Ratcliff et al., 1994, 1992;
Shiffrin, Huber, & Marinelli, 1995; Yonelinas, Hockley, & Murdock,
1992) and was recently demonstrated in associative recognition by
Osth and Dennis (2014) using both yes/no and 2AFC testing. The
finding of the null list strength effect has become a canonical con-
straint on recognition memory models (Chappell & Humphreys,
1994; Dennis & Humphreys, 2001; Johns et al., 2012; McClelland &
Chappell, 1998; Norman & O’Reilly, 2003; Shiffrin et al., 1990;
Shiffrin & Steyvers, 1997).

The vast majority of the investigations that found no effect of
list strength on recognition memory performance used single
words or word pairs as study and test stimuli. Following the
investigation of Kinnell and Dennis (2012); Osth et al. (2014)
tested images of fractals, faces, and natural scenes for the presence
of a list strength effect while simultaneously using the list length
controls advocated by Dennis and colleagues.® A significant list
strength effect was found for fractals with both yes/no and 2AFC
testing whereas null effects of list strength were found for faces
and scenes (although a significant list strength effect was found
using artificial faces by Norman et al., 2008). Osth et al. (2014)
used this finding to support the hypothesis of Kinnell and Dennis
(2012) that novel nonlinguistic stimuli may be more susceptible to
the effects of item noise.

An additional regularity of the list strength paradigm is the
strength based mirror effect, in which strengthening a set of list
items results in higher hit rates for those items along with a lower

false alarm rate. Hirshman (1995) found this pattern to be ubiqui-
tous in the early published list strength paradigms, and several
investigations have replicated the effect in both item recognition
(Criss, 2006, 2009, 2010; Hockley & Niewiadomski, 2007; Singer,
2009; Starns, Ratcliff, & White, 2012; Starns et al., 2010; Starns,
White, & Ratcliff, 2012; Stretch & Wixted, 1998b) and associative
recognition (Clark & Shiffrin, 1992; Hockley & Niewiadomski,
2007; Osth & Dennis, 2014). Furthermore, all of the nonlinguistic
stimuli in the study by Osth et al. (2014) exhibited a strength based
mirror effect.

Included in the model fit are four experiments using the list
strength paradigm: the datasets of Osth et al. (2014) and Osth and
Dennis (2014). All of these experiments compared lists of 32
unique items or pairs of items across two conditions: a pure weak
condition where all items or pairs were presented once, along with
a mixed list condition where half of the items or pairs were
presented once and the other half were presented four times. To
make the tests of both list conditions comparable, all repetitions in
these studies occurred after all of the unique items were presented
once. Fractals, faces, and natural scenes were the stimuli of Osth
et al. (2014, Experiments 1-3, respectively) and word pairs were
used in the study of Osth and Dennis (2014). Only the yes/no data
from these investigations were used.

In all experiments, hit rates for strong items or pairs greatly
exceeded those of weak items or pairs. This was accommodated by
allocating a separate learning rate rieny OF I,esoc TOr the items or
pairs that were presented four times. To guarantee that learning
rates for strong items exceeded those for weak items, the samples
of the strong learning rates were added to the weak learning rates.
The value of the strong learning rates along with the value of the
item mismatch variability parameter influence the magnitude of
the list strength effect.

One aspect of the associative recognition dataset that distinguishes
it from the item recognition datasets is that the test lists in the mixed
lists comprised rearranged pairs constructed from both weak (once
presented) and strong (four times presented) pairs. Several studies
have made such a comparison and found equivalent false alarm rates
to both weak and strong pairs in young adults (Buchler et al., 2008;
Cleary et al., 2001; Gallo, Sullivan, Daffner, Schacter, & Budson,
2004; Kelley & Wixted, 2001; Mickes, Johnson, & Wixted, 2010;
Osth & Dennis, 2014),” which can be considered a broken within-list
strength based mirror effect, although some studies have found re-
duced false alarm rates for strong pairs under specific conditions such
as delayed responding or substantial strength differences between
weak and strong pairs (Light et al., 2004; Malmberg & Xu, 2007; Xu
& Malmberg, 2007). A unique aspect of the Osth and Dennis dataset
is that both an intact and broken strength based mirror effect were
observed: false alarm rates were lower in mixed lists than in pure

8 As noted by Osth et al. (2014), while the controls for differences in
retention interval, attention, and contextual reinstatement are not com-
monly applied in list strength paradigms, they can similarly contribute to
the artifactual finding of a list strength effect.

" Higher false alarm rates to strong pairs have been observed in older
adults (Buchler, Faunce, Light, Gottfredson, & Reder, 2011; Light, Patter-
son, Chung, & Healy, 2004). While one possibility for this result is that
older adults suffer from more item noise at retrieval, another possibility is
that they rely more on item information in the associative recognition task
than in younger adults, possibly because of a poorer ability to encode and
use associations (Naveh-Benjamin, 2000).
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weak lists (an intact across-list strength based mirror effect), but false
alarm rates to weak and strong pairs were equivalent in the mixed list
(a broken within-list strength based mirror effect). As was previously
mentioned, the false alarm rates between weak and strong pairs is an
additional constraint on the item mismatch variability parameter Utzi-

A Note on Response Criteria

In the Turner, Dennis, and Van Zandt (2013) model fit, the criteria
of the model were fixed at 0.0, which reflects the point on the log
likelihood ratio scale where an item is equally likely to be a target or
a lure. Nonetheless, some recent evidence has suggested that there is
substantial variability in criteria across participants. Aminoff et al.
(2012) found reliable individual differences in criteria across partici-
pants and found they were predicted by such psychometric variables
as personality traits and affect. Kantner and Lindsay (2012) found that
individual differences in response criteria were stable across recogni-
tion tests that were up to a week apart, although they varied somewhat
across different stimulus materials.

Thus, we allowed for individual differences in the decision criterion
parameter by having each participant’s criterion sampled from a set of
hyperparameters. Additionally, given the differences among different
experiments in terms of the perceived difficulty of the stimulus
materials, we have allowed different hyperparameters for each exper-
iment to be used. Criteria were not allowed to vary across conditions
or across trials within a given experiment.

A Note on Participant Exclusion

The studies of Kinnell and Dennis (2012); Osth et al. (2014), and
Osth and Dennis (2014) all used experimental parameters that were
quite similar to each other. Nonetheless, the studies of Osth and
Dennis and Osth et al. excluded participants who exhibited d’ that was
zero or less in one of their experimental conditions, as these were
likely participants who were not properly following instructions. As a
consequence, the performance of the groups in these studies was
noticeably higher than those of the Kinnell and Dennis experiments.
To ensure that the data from the studies are comparable to each other,
we used the same exclusion criteria on the experiments from Kinnell
and Dennis. This resulted in the exclusion of 12 participants from
Experiment 1, 1 participant from Experiment 2, and 8 participants
from Experiment 4. No participants from Experiment 3 met these
exclusion criteria.

The Hierarchical Bayesian M odel

It is quite common to express hierarchical Bayesian analyses as
graphical models (Jordan, 2004). However, because of the large
number of datasets being used in the fit in addition to the fact that
several parameters are constrained across the fits, a complete graph-
ical model would be too large and cumbersome to be useful to the
reader. Instead, we have presented a general graphical model in
Figure 7 that describes the parameters of the model whereas descrip-
tions of the entire set of hyperparameters and the datasets and condi-
tions to which they apply can be found in Table 3.

One of the advantages of the Bayesian approach is the ability to
restrict the parameter space via a specified prior distribution to
reflect a priori beliefs about how the parameter is distributed
(Vanpaemel & Lee, 2012). However, given that this model has not

been previously fit to data, we use nearly noninformative priors
instead that place approximately equal likelihood over all values in
the parameter space. For participant parameters that are bounded
between 0 and 1 (r and o), parameters were sampled from 3
distributions that were reparameterized in terms of the mean (\)
and variance (v) parameters of the B distribution. This reparam-
eterization is achieved from the initial parameters « and B by
setting « = Av and B = (1 — v)\. Prior distributions on these
parameters were as follows:

N ~Beta(.5,2)
v~ InverseGamma (.1, .1)

For parameters that are bounded between 0 and « (o2, 0%, o3, p,
and ), participant parameters were sampled from lognormal dis-
tributions. For parameters that are bounded between — and oo (the
criterion parameters), participant parameters were sampled from
normal distributions. Prior distributions on the mean (o) and
precision (£) of the normal and lognormal distributions were
specified as follows:

o~ Normal (0, .001)

¢ ~InverseGamma (.1, .1)

All of the model’s parameters were used to calculate the means
and variances of the memory strength distributions according to
Equations 12, 13, and 14 for item recognition and Equations 15,
16, and 17 for associative recognition. The memory strength
distributions were then converted to log likelihood ratio distribu-
tions using the equations in Appendix B. For the experiments that
used the yes/no response procedure, hit (h) and false alarm (f) rates
were calculated by taking the area above the response criterion. Hit
(H) and false alarm (F) count predictions for each participant i in
a given condition j in experiment k were sampled from a binomial
distribution:

Hi,j,k~ Binomial (hi,j,kv T],k)
Fi,j,k~ B|n0ma] (hi,j,kl Lj,k)

where T and L refer to the number of target and lure trials. For the
DeCarlo (2007) experiment which utilized confidence ratings, h
and f were calculated for each confidence category c by calculating
the area between the criteria for the middle responses, the area
above the highest criterion for the highest confidence rating, and
the area below the lowest criterion for the lowest confidence
rating. H and F predictions for each confidence category were
sampled from a multinomial distribution:

HCl,iV feay Hcﬁ,i -~ Mult|n0m|al (hCl,il ceay fCG,il T)

S fein L)

where cl is the lowest confidence rating and c6 is the highest
confidence rating.

The hierarchical model was fit using JAGS software (Plummer,
2003). The data were fit to all 594 participants from each of the 10
aforementioned datasets simultaneously. The data from each par-
ticipant were the raw response counts for targets and lures in each
condition. The results of the model fit are based on 32 chains, each

FCl,i! sy Hcﬁ,i -~ Mult|n0m|al (fcl,il .o



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

278

OSTH AND DENNIS

i participants J

N

j conditions /

N

/

k experiments

Figure 7. General graphical model representation of the hierarchical Bayesian fit of the recognition memory
model. Description of the entire set of hyperparameters can be found in Table 3. SM = self match; IN = item

noise; CN = context noise; BN = background noise.

consisting of 10,000 samples after 4,000 burn-in samples were
discarded. Chains were visually checked for convergence.

Analysis of the Model Fit

In our presentation of the fit of the model to the data, we present
both group level predictions and predictions for the individual partic-
ipants. To assess the goodness of fit at the group level, we follow
convention established in the recognition memory literature and re-
strict analyses to hit and false alarm rates and d’. Group level predic-
tions were derived from the means of the hyperparameters which
correspond to group-level estimates of the relevant parameters. For
parameters that were lognormally distributed, the hypermean o pa-
rameters were transformed as €, which is both the geometric mean
and median of the lognormal distribution.?

Space precludes depiction of how the set of 594 individual partic-
ipant parameters of the model were able to fit the data. Instead, we
depict the individual hit and false alarm counts from each participant
along with the model’s posterior predictive distribution. Unlike the
group level predictions, the posterior predictive distribution uses the
entire hyperdistribution: hit and false alarm predictions are generated
for each sample of the mean and variance or precision parameters. For

analysis of the individual participants’ interference contributions, in-
dividual participant parameters were used. The predictions and data
are depicted on a scatterplot with hits on the y-axis and false alarms
on the x-axis.

Where necessary, inferential statistics were performed on model
parameters by taking the difference between the means of the
hyperparameters and evaluating the proportion of samples that are
above zero, which measures the probability of a difference be-
tween the two model parameters. Additionally, all density esti-
mates on the posterior distributions were performed using Gauss-
ian kernel density estimation.

Parameter Estimates

Posterior distributions of the group means for each parameter can
be seen in Figure 8. Several parameters largely conform to expecta-
tions. The learning rate r is highest in conditions of strong perfor-

® The arithmetic mean of the lognormal distribution is e 12 e
preferred usage of the geometric mean/median e” because of the strong
degree of skew in the lognormal distribution, which makes the arithmetic
mean a worse measure of central tendency.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

SOURCES OF INTERFERENCE 279

Table 3
All Hyperparameters Included in the Hierarchical Model
Param. Number Cond. Datasets
Fitem 1 Words (1 s) DC
2 Words (3 s) DLK
3 Fractals 1x KD Ex 2; ODK Ex 1
4 Fractals 4x ODK Ex 1 (mixed list cond.)
5 Faces 1x KD Ex 3; ODK Ex 2
6 Faces 4x ODK Ex 2 (mixed list cond.)
7 Scenes 1x KD Exp 4; ODK Ex 3
8 Scenes 4x ODK Ex 3 (mixed list cond.)
I assoc 1 Pairs 1x KD Ex 1; OD
2 Pairs 4x OD (mixed list cond.)
s 1 Short delays (3.5 min) ODK Ex 1, 2, 3; OD
2 Long delays (8 min) DLK; KD Ex 1, 2, 3, 4
3 Long list, no filler DLK
ol 1 Al All datasets
ol 1 Al All datasets
ol 1 Words DLK; DC; KD Ex 1; OD
2 Fractals KD Ex 2; ODK Ex 1
3 Faces KD Ex 3; ODK Ex 2
4 Scenes KD Ex 4; ODK Ex 3
p 1 LF words DLK; DC
2 HF words DLK; DC
Biten 1 Words DLK; DC
2 Fractals KD Ex 2; ODK Ex 1
3 Faces KD Ex 3; ODK Ex 2
4 Scenes KD Ex 4; ODK Ex 3
B assoc 1 Pairs KD Ex 1, OD
1-5  Confidence DC
6 DLK
7 KD Ex 1
8 KD Ex 2
9 KD Ex 3
10 KD Ex 4
11 ODK Ex 1
12 ODK Ex 2
13 ODK Ex 3
14 OD Ex 1
Note. Param. = parameter; cond. = condition; DC = DeCarlo (2007);

DLK = Dennis, Lee, and Kinnell (2008); KD = Kinnell and Dennis
(2012); ODK = Osth, Dennis, and Kinnell (2014); OD = Osth and Dennis
(2014); 1x = once presented; 4x = four times presented. Note that each
parameter receives its own mean and variance/precision parameter; see the
text for details.

mance: repeated items in the list strength experiments have the highest
learning rates, and the learning rate is higher in the Dennis et al.
(2008) dataset than the DeCarlo (2007) dataset, which is sensible
given the higher presentation time in the former experiment. Learning
rates were also higher for better performing stimulus classes, with
words, word pairs, and scenes showing the highest learning rates and
fractals and faces exhibiting the poorest learning. The context match
parameter .. Was expected to vary with study-test delay: estimates of
this parameter varied by the duration of filler activity as predicted,
with the lowest values seen for the 8 min filler activity and higher
values for the 3.5 min filler activity and the long list, no filler
condition of Dennis et al. (2008) to reflect poor contextual reinstate-
ment. The context mismatch parameter p, which influences the
magnitude of context noise, varied as expected with higher
values for high frequency than low frequency words to reflect
their greater occurrences in memory. A slightly negative bias in
the criteria (®) can be seen for all stimulus classes except for
scenes, which exhibit a more conservative bias.

As was previously mentioned, Osth et al. (2014) attributed the
small item noise effects seen for nonlinguistic stimuli to a higher
degree of both item and background noise than word stimuli would
exhibit, and the resulting parameter estimates conformed to these
predictions. Both the item mismatch parameter aﬁ and the background
noise parameter B vary by stimulus class largely as predicted. Differ-
ence distributions for these parameters can be seen in Figure 9. The
highest values for the item mismatch variability parameter are
for fractals and faces. For fractals, 95.4% of the fractals minus
words difference distribution lies above zero. For the faces
minus words comparison, 99.9% of the difference distribution
lies above zero. Images of natural scenes do not appear to differ
significantly from words, as only 33.7% of the scenes minus
words difference distribution lies above zero. For the back-
ground noise parameter, fractals, scenes, and pairs differ sig-
nificantly from words, with 99.9%, 99.2%, and 100% of the area of
the respective difference distribution lying above zero. Although faces
appear to exhibit more background noise than words, 82.6% of the
area of the faces minus words difference distribution lies above
zero. Further comparison of the complete interference estimates
for each stimulus class can be seen in the section Interference
Contributions.

The Moddl Fit

Although the primary purpose of fitting the model to data was to
measure the magnitudes of the different interference contributions,
interpretation of the model parameters is also reliant on the model
achieving a good quantitative fit to the data. In this section, we present
the model’s predictions alongside both the group and individual
participant data. For the group data, rather than compare the hit and
false alarm rates generated from frequentist methods, we separately
estimated the hit and false alarm rates for each dataset using simple
hierarchical models and depict the predicted rates from the group
mean parameters. Details of how the binomial and multinomial rates
were estimated can be seen in Appendix C.

Word frequency and confidence ratings. Fit to DeCarlo
(2007). The fit to the DeCarlo (2007) dataset can be seen in Figure
10 for the standard ROC and Figure 11 for the z-transformed ROC.
To generate a density estimate of the ROC function, the density was
estimated on all of the points of the confidence based ROC simulta-
neously. Inspection of the graphs reveals that the model exhibits a
close correspondence to the experimental data, with better predicted
performance for LF words than HF words.

The model misses slightly on the zZROC slopes: predicted zROC
slopes for the median zZROC points for the data are .81 and .83 for LF
and HF words whereas the model produced zROC slopes of .91 and
.95 for LF and HF words. This may be because inspection of Figure
11 reveals that the data’s zROCs for HF words are slightly curvilinear,
whereas the model is only capable of producing linear zROC slopes.
Curvilinear ZROC slopes have been attributed to various factors, such
as the presence of recollection (Yonelinas, 1994), probability mixtures
of encoded and nonencoded items (DeCarlo, 2002), and decision
noise (Ratcliff & Starns, 2009). We would like to emphasize that the
primary purpose of including this dataset in our omnibus fit was not
to discriminate between different theoretical explanations of ROC
functions, but to constrain the parameters of the model that are
principally responsible for producing unequal variance between the
target and lure distributions, namely the variance in the item and
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Figure 8. Posterior distributions for all hyperparameters in the omnibus fit. Depicted parameters are the
learning rate r (learning rates for strong items/pairs are the sum of the weak and strong learning samples and are
indicated by dashed lines), the mean context match g, the variance in the item match (rft, the variance in the
context match oi, the item mismatch variance crﬁ, the context mismatch variance p, the background noise B,
along with the decision criteria @. Note: DLK = Dennis, Lee, and Kinnell (2008) dataset; DC = DeCarlo (2007)
dataset. See the online article for the color version of this figure.

context match parameters crtz1 and 0'2$. Inspection of Figure 8 reveals
that the parameters are well constrained by the data, as their posterior
distributions appear within only a limited range of their prior distri-
butions, which are broad and noninformative.

Individual participant data along with the model’s posterior
predictive distribution can be seen in Figure 12. One can see that
the density of the model’s predictions closely follows the density
of the individual participant responses.

List length, word frequency, and study-test delay: Fit to
Dennis, Lee, and Kinnell (2008). The fit to the group data of
Dennis et al. (2008) can be seen in Figure 13. For this dataset and
all remaining datasets, the density estimates of the posterior dis-

tributions of both the rates estimated from the data along with the
model’s predicted rates are depicted using teardrop plots, which
are vertical depictions of the posterior distribution. A teardrop plot
is constructed by plotting a posterior distribution sideways for both
the left and the right. Areas of the teardrop plots with greater width
indicate higher density regions of the posterior distribution.

The model achieves an excellent fit to the data, with the poste-
rior distributions of the model’s predictions aligning very closely
with the posterior of the group data. As mentioned previously, this
dataset exhibited a small list length effect in the no filler condition
while there was no effect of list length in the filler condition,
similar to what is seen in the data. Dennis et al. (2008) argued that
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Figure 9. Density estimates of the differences between the means of the hyperparameters between words and
other stimulus classes for both the item mismatch variability parameter cﬁ (left) and the background noise
parameter 3 (right). See the online article for the color version of this figure.

when study lists are immediately followed by a test list, partici-
pants might be more likely to use an end-of-list context than
reinstate a list-wide context. We allowed for this possibility by
allowing a separate set of . hyperparameters for the long list in
the no filler condition. While inspection of Figure 8 revealed that
the poor contextual reinstatement o, parameter ended up quite
high, it was still sufficient to allow the model to predict a small
effect of list length in the no filler condition.

Fit to DeCarlo (2007)
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Figure 10. Density estimates of the ROC function for both the data of
DeCarlo (2007, left) and model (right) for low (top) and high (bottom)
frequency words. The circles indicate the median of the hit and false alarm
rate posterior distributions for each ROC point. LF = low frequency; HF =
high-frequency; FAR = false alarm rate. See the online article for the color
version of this figure.

Because of the low estimate of the item mismatch variance
parameter o2 for word stimuli, the model predicts virtually no
effect of list length in the filler condition. The model also predicts
the word frequency mirror effect in the data, predicting both higher
hit rates and lower false alarm rates for low frequency words. The
performance decrement of delayed testing in the 8 min filler
condition is also addressed by the model, although the magnitude

Fit to DeCarlo (2007)
LF: Data LF: Model
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Figure 11. Density estimates of the zZROC function for both the data of
DeCarlo (2007, left) and model (right) for low (top) and high (bottom)
frequency words. The circles indicate the median of the z-transformed hit
and false alarm rate posterior distributions for each ROC point. LF = low
frequency; HF = high-frequency; FAR = false alarm rate. See the online
article for the color version of this figure.
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Figure 12. Individual participant responses for each confidence rating and

word frequency class for the data of DeCarlo (2007). Predicted confidence
counts from the model are shown as the colored density estimates. LF = low
frequency; HF = high-frequency. See the online article for the color version of
this figure.
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Figure 13. Fit to the data of Dennis et al. (2008) for all conditions.
Depicted are the density estimates from group level parameters for both the
data and the model, along with median posterior estimates for the data
(circles) and the model (x’s). LF = low frequency; HF = high-frequency;
HR = hit rate; FAR = false alarm rate. See the online article for the color
version of this figure.

of the performance decrement on both the data and the model’s
predictions appears to be small.

One should also note that several of the parameters used in the
fit to this dataset were constrained across other datasets. The
context mismatch variability parameters p for low and high fre-
quency words, along with the background noise parameter 3 and
item mismatch variability parameter for word stimuli cﬁ were also
used in the fit to the data from DeCarlo (2007). The item mismatch
variability parameter for word stimuli was also used in the fits to
the experiments that use word pairs, namely the associative rec-
ognition experiments that manipulate list length and list strength
conducted by Kinnell and Dennis (2012) and Osth and Dennis
(2014).

Individual participant data along with the model’s posterior
predictive distribution can be seen in Figure 14. One can see that
the density of the model’s predictions closely follows the density
of the data.

List Length and List Strength With Nonlinguistic
Stimuli: Fit to Kinnell and Dennis (2012)
and Osth et al. (2014)

Fits to all of the datasets with nonlinguistic stimuli, specifically
fractals, scenes, and faces, can be seen in Figure 15. This includes
the list length experiments conducted by Kinnell and Dennis
(2012) and the list strength experiments conducted by Osth et al.
(2014). The fit to the data are quite good, with the model’s
predictions falling within the posterior distribution of the data for
every comparison. Inspection of the list strength data reveals that
the model is adept at predicting the large strength based mirror
effect for fractals and for faces, with much lower false alarm rates
being predicted for the mixed condition than for the pure weak
condition.

The magnitude of the list length and list strength effects is
difficult to evaluate on the basis of hit rates and false alarm rates
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Figure 14.
conditions. Predicted hit and false alarm counts from the model are shown as the colored density estimates. LF =
low frequency; HF = high-frequency; FA = false alarms. See the online article for the color version of this
figure.

alone. d’ estimates can be seen in Figure 16. For fractals and faces,
both the data and the model reveal lower d’ in the long list and
mixed list conditions relative to the short list and pure weak
conditions. As was previously mentioned, the detrimental effects
of list length and list strength are quite small in both the data and
the model’s predictions. For scenes, there is no effect of list length
or list strength. These predicted effects correspond to the differ-
ences in item mismatch variability depicted in Figure 8, as list
length and list strength effects are predicted for the stimuli with the
highest values of item mismatch variability.

Individual participant data along with the model’s posterior
predictive distribution for both the list length and list strength
paradigms can be seen in Figures 17 and 18. The fit appears to be
quite good.

List Length and List Strength With Word Pairsin
Associative Recognition: Fit to Kinnell and
Dennis (2012) and Osth and Dennis (2014)

Fits to the datasets that use the associative recognition task with
word pairs can be seen in Figure 19. This includes the list length
experiment of Kinnell and Dennis (2012, Experiment 1) and the
experiment of Osth and Dennis (2014) that utilized yes/no re-
sponding. The fit to the data are good, with the model predictions
falling within the posterior distributions of the data. Nonetheless,
the fit to the list length experiment is somewhat worse than the fit
to the list strength experiment. This is in part because the perfor-
mance of the participants appears to be much poorer in the list
length experiment than in the list strength experiment despite the
similar experimental parameters used in both experiments; d’
estimates can be seen in Figure 20. The model predicts no effect of

Individual participant hit and false alarm counts from the Dennis et al. (2008) dataset for all

either list length or list strength on associative recognition perfor-
mance. Although performance appears to be somewhat poorer in
the long list, this effect was found to not be significant by Kinnell
and Dennis (2012) in their analyses.

As mentioned previously, the item mismatch variability param-
eter 2 is not just constrained by the manipulations of list length
and list strength, but higher values of oﬁ predict higher false alarm
rates to strong rearranged pairs than weak rearranged pairs in mixed
lists. Inspection of Figure 19 reveals that the model predicts nearly
equivalent false alarm rates between weak and strong rearranged
pairs, like in the data. Thus, the model is able to simultaneously
predict the cross-list strength based mirror effect (lower false alarm
rate [FAR] in the mixed list than in the pure weak list) as well as the
broken within-list strength based mirror effect (weak FAR = strong
FAR). This is because the strength estimates used in the likelihood
ratio calculation are list-wide: when the strength of a list changes, the
strength estimates change. However, on a given test list, the strength
estimates are not permitted to change across trials. This is conceptu-
ally quite similar to the hypotheses of Stretch and Wixted (1998b) and
Hockley and Niewiadomski (2007), who posited that criterion shifts
occur across lists but stay relatively constant within a test list. Indi-
vidual participant data along with the model’s posterior predictive
distribution for both the list length and list strength paradigms can be
seen in Figure 21.

Interference Contributions

To evaluate the contributions from each interference component,
the means of the hyperparameters were used to calculate each inter-
ference component according to Equations 14 and 17. Because the
variance of the self match is less relevant than the other contributions,
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Figure 15. Hit and false alarm rates for the data and the model fit to the list length experiments of Kinnell and
Dennis (2012, left) and the list strength experiments of Osth et al. (2014, right). Depicted are the density
estimates from group level parameters for both the data and the model, along with median posterior estimates
for the data (circles) and the model (x’s). HR = hit rate; FAR = false alarm rate. See the online article for the

color version of this figure.

only the components of the lure distribution were used in the calcu-
lation. For word pairs in associative recognition, we combined the
partial match and item noise terms from Equation 17 because of the
shared influence of the item mismatch variability parameter on their
predicted magnitudes. Density estimates of the item noise, context
noise, and background noise calculated for each dataset in the fit can
be seen in Figure 22. Given that context noise was only measured for
single word stimuli, context noise is only present in the fits to DeCarlo
(2007) and Dennis et al. (2008).

Figure 22 depicts the total interference contributions in order from
smallest to largest. For the item noise estimates, only the conditions
with the highest item noise were used (long lists in list length manip-
ulations and mixed lists in list strength manipulations). One can see
that the item noise contributions for words and scenes along with
context noise for low frequency words rank as the smallest interfer-
ence contributions out of all of the interference contributions. Figure
22 also confirms that the differences in the item mismatch variability

parameters across stimulus classes extend to the total item noise as
well. Item noise is significantly higher for fractals and faces than for
single words, word pairs, and scenes. Additionally, the largest inter-
ference estimates appear to be background noise and context noise for
high frequency words. Despite the fact that background noise esti-
mates were low for single words, they appear to be quite large relative
to the other interference contributions. Item noise, in contrast, does
not appear to dominate the other interference contributions in any of
the datasets.

To elucidate the relative contributions of each interference compo-
nent, proportions of total interference were calculated for each inter-
ference term. For each dataset, the condition with the highest item
noise was used (long lists in the list length experiments and mixed
lists in the list strength experiments). Given that the dataset of (De-
Carlo, 2007) used shorter lists (70 items) than the longest lists in the
(Dennis et al., 2008) dataset (80 items), only the dataset of the Dennis
et al. fit was used in this analysis. Additionally, given that only one
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of this figure.

context noise term contributes at retrieval, separate analyses were
performed for the low and high frequency words.

Proportions of total interference can be seen in Figure 23, which
contains bar plots of the median proportion of total interference for
each interference component along with the 95% highest density
interval (HDI). For single words, word pairs, and scenes, item noise
is extremely close to zero in its contribution to the total interference.
For fractals and scenes, item noise occupies a much greater proportion
of the total interference. Nonetheless, for fractals and faces, back-
ground noise occupied a significantly greater proportion of interfer-
ence than item noise in the list length datasets, with 99.5% and 97.8%
of the background noise minus item noise difference distribution
above zero for fractals and faces, respectively. The differences are
more ambiguous for the list strength datasets, with 94.2% and 86.1%
of the background noise minus item noise difference distribution
above zero for fractals and faces. For scenes and word pairs, back-
ground noise occupies virtually all of the total interference.

Converging evidence was found in an analysis of the inter-
ference contributions of the individual participants. For each
participant, difference distributions were constructed between
the item noise of the highest item noise condition and the other
interference contributions. Following statistical conventions,
differences among the interference contributions were deemed
significant if 95% of the area of the difference distribution lied
above zero. For words in the Dennis et al. dataset, all of the
participants exhibited significantly higher background noise
than item noise and significantly higher context noise for high
frequency words than item noise. For both word pairs and
scenes, all of the participants exhibited higher background noise
than item noise in both the list length and list strength datasets.
For fractals, one participant exhibited significantly higher back-
ground noise than item noise for the list length dataset. Other-
wise, for both fractals and faces, none of the participants
exhibited a dominant interference contribution.
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Figure 17. Individual participant hit and false alarm counts for the short

(left) and long (right) list conditions for fractals (top), faces (middle), and
scenes (bottom). Predicted hit and false alarm counts from the model are
shown as the colored density estimates. See the online article for the color
version of this figure.

One of the surprising findings of this analysis is that context
noise is virtually zero for low frequency words (median of .03%
of total interference), with background noise occupying nearly
all of the interference (median: 98.7%). For high frequency
words, roughly equivalent levels of context noise and back-
ground noise are present. How could low frequency words
exhibit such little context noise? In our fits, we collapsed across
the number of occurrences of a word (m) and the variability in
the similarity to previous contexts (oiu). One possibility is that
contexts are quite dissimilar to previous contexts, meaning that
the true value of oﬁu is quite low. High frequency words may
suffer from considerable interference not because of the overlap
among contexts, but because of their frequent exposures (a high
value of m).

Although we have reported that the model’s fit is quite good,
a model can often times fit well because it is over fitting the
data (Pitt & Myung, 2002). One way to ensure that a model is

capturing the underlying structure of the data are to fit the
model to only a sample of the total data and evaluate how well
it performs on the remaining data, a technique called cross-
validation. We performed a k fold cross-validation procedure,
which has been shown to outperform the leave-one-out cross-
validation (LOOCV) method (Arlot & Celisse, 2010). In the k
folds procedure, the data are equally divided into k sections, or
folds, and the model is independently fit to each fold. For each
fold, the model’s generalizability was evaluated by comparing
the model’s predictions to the withheld data. Not only was the
model well able to fit the withheld data, but parameter estimates
were consistent with those derived from the main fit. The
description and results of the cross-validation procedure can be
seen in Appendix D.

General Discussion

When cues are globally matched against the contents of memory
the output of the retrieval process can be characterized on the basis
of matches and mismatches to the item and context cues used at
retrieval. We fit a global memory model based on the tensor model
of Humphreys, Bain, and Pike (1989) that directly parameterizes
the matches and mismatches to the item and context cues to 10
recognition memory datasets. The model allows for an analytic
estimation of the contributions of item noise, context noise, and
background noise that directly follow from the parameters of the
model. Although a model is made more flexible by inclusion of all
possible interference sources, the fact that the different stimulus
classes differed along these dimensions in psychologically mean-
ingful ways supports taking such a comprehensive approach.
Moreover, the parameters of our model were constrained by the
manipulations of strength, list length, list strength, word fre-
quency, study-test delay, along with the different stimulus classes.
Maximum constraint was imposed on the model by constraining
several of the model’s parameters to be constant across several of
the datasets in the fit, which contained a total of 594 participants.

Resulting parameter estimates derived from a hierarchical
Bayesian analysis revealed that item noise plays a rather small role
in retrieval, although the magnitude of its influence depends on the
stimulus class. Estimates of item noise were jointly constrained by
the manipulations of list length, list strength, as well as the simul-
taneous testing of weak and strong pairs in a mixed list. For words,
word pairs, and scenes, item noise is extremely close to zero and
interference stems entirely from pre-experimental sources, namely
context noise and background noise. For fractals and faces, item
noise is much larger, although background noise appears to be the
dominant source of interference for these stimulus classes in some
comparisons (the list length datasets). None of the analyses re-
vealed a dominant influence of item noise in any of the stimulus
classes or individual participants. These results were particularly
surprising because the contributions of background noise have
generally been ignored by models of episodic recognition. In the
following sections, we discuss the implications for these parameter
estimates in the recognition memory literature, such as what the
parameter estimates imply about the underlying representations of
linguistic and nonlinguistic stimuli and comparisons to previous
investigations that have argued for higher magnitudes of item
noise.
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Figure 18. Individual participant hit and false alarm counts for the pure weak (left) and mixed weak (middle)

and mixed strong (right) conditions for fractals (top), faces (middle), and scenes (bottom). Predicted hit and false
alarm counts from the model are shown as the colored density estimates. False alarms are the same for the mixed
weak and mixed strong conditions whereas the hits to 4X presented items are in the mixed strong plot. See the

online article for the color version of this figure.

Plausibility of Low Item Noise

Although the results of our model fit demonstrate that item noise
makes a relatively small contribution to the total interference in
recognition memory tasks, it does not specify what the vector
representations of the items are that would result in low item noise.
It has been argued that no interference among the items can be
exhibited when item representations are orthogonal to each other
(Dennis & Humphreys, 2001; Osth & Dennis, 2014). At a psy-
chological level, this would imply that item representations are
dissimilar and share no features with each other. The results of our
fitting imply that there is a nonzero contribution of item noise at
retrieval, which rejects the notion of orthogonal item representa-
tions. Nonetheless, a close approximation would be using rela-
tively sparse item representations, meaning that they are not com-
pletely orthogonal but exhibit minimal overlap with each other.

Some might find such an idea implausible, especially given that
words in recognition memory tasks are often perceived as similar
to each other in meaning, phonology, and surface form. How then
could their representations be dissimilar? A number of theories of
hippocampal function describe the function of the hippocampus as
creating sparse high dimensional representations from overlapping
inputs (Kumaran & McClelland, 2012; Marr, 1971; McClelland,
McNaughton, & O’Reilly, 1995; Norman & O’Reilly, 2003;
O’Reilly & McClelland, 1994; O’Reilly & Rudy, 2001; Treves &
Rolls, 1992), allowing the hippocampus to exhibit fast learning,
discriminate among highly similar novel inputs, and minimize
interference, all qualities that are critical for performance on epi-
sodic memory tasks. Tasks that require the similarity among the
items to be emphasized can use the distributed representations in
the neocortex that have been developed from experience, which is
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Figure 19. Hit and false alarm rates for the data and the model fit to the list length experiments of Kinnell and
Dennis (2012, left) and the list strength experiments of Osth and Dennis (2014, right) that use word pairs in an
associative recognition task. Depicted are the density estimates from group level parameters for both the data and
the model, along with median posterior estimates for the data (circles) and the model (x’s). HR = hit rate;
FAR = false alarm rate. See the online article for the color version of this figure.

a central component of the complementary learning systems (CLS)
theory (McClelland et al., 1995).

Another possible interpretation is that item representations are
multidimensional and that their dimensions can be weighted based
on their relevance to a cognitive task, as proposed by the gener-
alized context model (GCM; Nosofsky, 1986, 1991). In this re-
gard, dimensions among the items in a recognition memory task
that emphasize their similarity, such as their shared semantics or
surface appearance, may be de-weighted for optimal discrimina-
tion of old from new items. This approach yields similar interpre-
tations as to the hippocampal theories, in that representations of
items are not fixed, but adapt to the task faced by the participant.
Thus, the results of our model fitting do not imply that word
representations are dissimilar in all cognitive tasks, merely that
they are dissimilar in episodic memory.

Another possible objection to the finding of minimal item noise
in recognition memory is that in the free-recall task, manipulations
of list length (Murdock, 1962; Roberts, 1972; Ward, 2002) and list
strength (Malmberg & Shiffrin, 2005; Ratcliff et al., 1990; Tulving
& Hastie, 1972) exhibit robust decrements on recall performance.
How could a memory system that exhibits minimal interference
among the items in recognition memory exhibit such strong com-
petition among the items in a free-recall task? As it turns out, the
majority of current free recall models exhibit competition among
the items not because of overlap in their item representations, but
because of usage of a sampling with replacement memory search
process (Davelaar, 2007; Wixted & Rohrer, 1994).

In resampling models, the context cue initiates the probabilistic
sampling of items that are most strongly bound to the list context.
As recall progresses, previously recalled items are not removed
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Figure20. Hit and false alarm rates for the data and the model fit to the list length experiments of Kinnell and
Dennis (2012, left) and the list strength experiments of Osth and Dennis (2014, right) that use word pairs in an
associative recognition task. Depicted are the density estimates from group level parameters for both the data and
the model, along with median posterior estimates for the data (circles) and the model (x’s). See the online article
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from the set of recall candidates. Instead, they can continue to be
sampled by the search process instead of items that have not yet
been recalled. List length effects fall naturally from resampling
models as longer lists contain more candidates to be output,
decreasing the probability that any particular item will be sampled.
It has been demonstrated by both Wixted and Rohrer (1994) and
Davelaar (2007) that resampling allows for the prediction of both
list length effects and the increase of interresponse times as recall
proceeds (Murdock & Okada, 1970). Additionally, other current
resampling models of free recall with specified item and context
representations, such as the model of Davelaar et al. (2005) and the
temporal context model (Howard & Kahana, 2002; Sederberg et
al., 2008), use orthogonal item representations and predict detri-
mental effects of list length on free recall performance, which
demonstrates that similarity among the list items is not necessary
to predict competition among the items in free recall.

Although TCM and the model of Davelaar et al. have not
simulated the list strength paradigm, resampling provides an intu-
itive explanation: increasing the strength of a subset of list items
increases their sampling probability and decreases the sampling
probability of the nonstrengthened items (Wixted, Ghadisha, &
Vera, 1997). Resampling also provides a similar and intuitive
explanation of the finding of output interference in recall tasks
(Dalezman, 1976; Dong, 1972; Roediger, 1974; Roediger &
Schmidt, 1980). Across a number of experiments, it has been dem-

onstrated that recalling a subset of the list items decreases the recall
probability of the remaining items. If it is assumed that the act of
recall strengthens the recalled items (as was assumed by the SAM
model, Raaijmakers & Shiffrin, 1981), then the sampling proba-
bility of the recalled items will increase at the expense of the
nonrecalled items, producing output interference as a consequence.

Thus, although it is clear that the free-recall task exhibits evi-
dence for competition among the list items at retrieval, the success
of free recall models in addressing effects of list length, list
strength, and output interference comes from the usage of resam-
pling during memory search. These effects do not necessitate
interitem similarity among the list items and a model such as ours
that exhibits minimal item noise in recognition memory could be
capable of exhibiting competition in a free-recall task through the
usage of resampling at retrieval during a free-recall task.

Arguments for Item Noise Models

There have been a number of experimental findings in the
recognition memory literature that have been used to argue for a
larger contribution of item noise than we have estimated in our
model fits, specifically the effects of manipulations of semantic
similarity and decrements in performance that occur through rec-
ognition testing. Here, we discuss these arguments in detail and
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describe how they are in fact compatible with the results and
interpretations from our modeling work.

Effects of semantic similarity on recognition memory. One
line of evidence that has been used to argue for the idea that item
noise plays a substantial role in recognition memory is the finding
that semantic similarity among studied items impairs performance.
Typically, this is accomplished in recognition experiments by
increasing the number of studied items from the same semantic
category, and decreases in performance with increasing category
length are often observed (e.g., Arndt & Hirshman, 1998; Criss &
Shiffrin, 2004; Dewhurst & Anderson, 1999; Robinson & Roedi-
ger, 1997; Shiffrin, Huber, & Marinelli, 1995). For instance,
Shiffrin, Huber, and Marinelli (1995) conducted an experiment in
which participants studied a large number of categories with
different numbers of exemplars, where categories were defined as
words associatively related to a prototype word. Robust decre-
ments in d’ were observed as category length increased from two
to nine exemplars (Experiments 1 and 2, although Experiment 4 in
the Appendix found no effect of category length on d’ when
category length was increased from 1 to 10 exemplars). Another
line of evidence concerns findings from the Deese-Roediger-
McDermott (DRM; Deese, 1959; Roediger & McDermott, 1995),
in which inclusion of a number of highly associated exemplars on
a study list causes participants to falsely endorse a strong associate
of the exemplars, a tendency that also increases with category
length (Robinson & Roediger, 1997). On the surface, these results
are consistent with the predictions of item noise models that
predict that as more similar items are entered into memory, it
becomes increasingly difficult to discriminate between studied and
unstudied exemplars from the same category (Clark & Gronlund,
1996).

Although our present model fits demonstrate that the magnitude
of the item noise contribution for words is quite small, we have fit
data from experiments that used lists of unrelated words. As we
have previously mentioned, the magnitude of item noise is depen-
dent on the stimulus class. Thus, one possibility is that unrelated
words exhibit very low interitem similarity whereas words that
share a semantic category are sufficiently similar to generate more
substantial degrees of item noise. This approach was undertaken
by Johns et al. (2012) who used a holographic memory model
where the item representations are high dimensional vectors gen-
erated from a large text corpus of over 30,000 documents. Specif-
ically, each dimension in the vector reflected a particular document
in the corpus and the dimension took a value of one if the word
occurred in that document and a zero otherwise. The resulting
vectors were quite sparse, and consequently there was virtually no
overlap among the vectors of unrelated words and no effects of list
length and list strength were predicted in their simulations of the
model. However, similar words overlap quite substantially because
of their co-occurrence in documents among the corpus, and for that
reason the model was able to predict higher false alarm rates for
semantically related lures in the DRM paradigm.

However, there are a number of complications from category
length designs that prevent us from endorsing the view that se-
mantically similar words exhibit high degrees of item noise. Spe-
cifically, evidence suggests that other factors complicate the inter-
pretation of category length and DRM effects. Changes in
performance across category length do not appear to be purely a
consequence of having studied similar content, but also appear to
reflect the usage of category labels as cues to guide retrieval.

Pure item noise models predict that as category length is in-
creased, performance should decrease monotonically, as the higher
number of similar studied items in memory makes it more difficult
to discriminate between studied items and highly similar lures.
However, Neely and Tse (2009) found that the change in perfor-
mance is actually nonmonotonic, with performance increasing as
category length increased from 1 to 2 items, decreasing to the
baseline level as category length increased to eight, and further
decreasing as category length increased to 14 items. Neely and Tse
(2009) suggested that the increase in performance could be
achieved if additional category labels are used at retrieval, allow-
ing memory to be more focused on items from a studied category
if the category length is relatively small (such as when category
length is two items).

When category labels get used as cues along with the studied
items, the task begins to resemble an associative recognition task,
as the question being asked by the participant during a recognition
test is no longer “Did | see this item on the study list?” but “Is this
item an exemplar of one of the categories | studied?”® Such a view
predicts that increases in category length, which would increase
the likelihood that category labels would be used as cues, should
produce an increase in the ability to discriminate studied categories
from unstudied categories. Dennis and Chapman (2010) found
exactly this pattern. They conducted a category length experiment
where category length and list length were manipulated by pre-
senting eight categories with category lengths of 1, 3, and 10

9 We would like to acknowledge Michael Humphreys for conceiving of
this analogy.
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Figure 23.  Median proportions of total interference for item noise, context noise, and background noise (bg.
noise) for the datasets of Dennis et al. (2008); Kinnell and Dennis (2012); Osth et al. (2014), and Osth and
Dennis (2014). Error bars represent the 95% highest density interval (HDI). LF = low frequency; HF =
high-frequency. See the online article for the color version of this figure.

exemplars. Since the list length increased as the category length is
increased, a pure item noise model predicts that discrimination of
studied from unstudied categories should get worse with increas-
ing length. Instead, false alarm rates to exemplars from unstudied
categories decreased as category length was increased. Fits of the
REM model found that the model predicted an increase in the false
alarm rate to exemplars from unstudied categories. This pattern of

data was well accounted for by the BCDMEM model, which
exhibits no item noise, by assuming that category length increases
the likelihood that category labels are used as cues in conjunction
with the probe at retrieval.

Another prediction from pure item noise accounts of the
category length effect is the within-category choice advantage
on forced choice tests (Clark, 1997; Clark & Gronlund, 1996;
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Hintzman, 1988). A counterintuitive prediction of the models is
that on a 2AFC recognition test, recognition should be superior
when both choices are from the same category than when both
choices are from different categories. The models make this
prediction because when two similar items are presented, the memory
strengths of the two items are correlated. When the difference
between the two memory strengths is calculated, the covariance
between the two similar items gets subtracted out, resulting in a
difference distribution that has lower variance for within-category
choices than for between-category choices. While Hintzman
(1988) found confirmatory evidence for this prediction, Maguire,
Humphreys, Dennis, and Lee (2010) noted that Hintzman com-
pared between and within category choices as a between subjects
manipulation, which may have changed the way participants ap-
proached the test. Additionally, participants were tested using
booklets, which did not properly control for lag between presen-
tations, the order of testing, and so forth. In the experiments of
Maguire et al., categories were generated from either word asso-
ciation norms or taxonomically generated categories and the au-
thors found no within-category choice advantage in all experimen-
tal conditions. They additionally confirmed the null hypothesis by
using the Bayesian analysis developed by Dennis et al., (2008).

Nonetheless, a remaining question concerns why discriminabil-
ity has often been found to decrease with category length. There
are two such confounds that can address this regularity in category
length experiments. First, when lists of semantic categories are
studied, performance has been found to decrease with within-
category serial position in recognition memory (Carey & Lockhart,
1973), free recall (Carey & Lockhart, 1973; Wood & Underwood,
1967), and cued recall (Jakab & Raaijmakers, 2009; Mulligan &
Stone, 1999). Many investigations of category length do not con-
trol for within-category serial position, and an implication of this
result is that longer categories tend to contain target items from
later within-category serial positions, degrading performance. In
Neely and Tse’s Experiment 4, when within-category serial posi-
tion was controlled there was no impairment in discriminability as
category length was increased from 2 to 14 exemplars. In another
condition where items came from later within-category serial po-
sitions, a category length on discriminability was found.*°

The second confound concerns a measurement issue in category
length designs, namely the usage of d’ to measure discriminability.
A difficulty with usage of d’ is its assumption of an equal variance
signal detection model, which is almost uniformly violated in ROC
experiments. If an equal variance model is used in the analysis,
changes in the response criterion can additionally change d’ (Ro-
tello, Masson, & Verde, 2008) and for that reason, d, is often
recommended for analysis. Cho and Neely (2013) conducted a
category length experiment where they used category lengths of 2,
8, and 14 exemplars using both old and new recognition with
confidence ratings and 2AFC testing. They additionally insured
that for all category lengths the same number of items were tested
in each category and that all items came from the same serial
position in the category. Although category length increased hit
rates and false alarm rates and decreased d’, there was no effect of
category length on d,, suggesting that a criterion shift may have
been taking place. An alternative possibility is that manipulations
of category length increase the mean of both the target and lure
distributions to equivalent degrees. Although item noise accounts
make this prediction, they further predict that the variance of both

distributions should increase and performance should decrease as
a consequence. Nonetheless, usage of a category label as an
additional cue may have the effect of shifting both distributions
upward without decreasing discriminability. Additionally, Cho and
Neely (2013) found no effect of category length on 2AFC recog-
nition performance and no within-category choice advantage in the
2AFC tests, replicating the results of Maguire et al. (2010).

Another issue with category length designs concerns the pro-
duction of implicit associative responses (IAR) during list presen-
tation, which can occur when lists contain words that are strongly
associated to reach other (e.g., silk, web, legs, are associates of
spider) rather than being members of the same taxonomic category
(e.g., spider, dog, cat are members of the category animal). Al-
though controlled studies have found no effect of category length
using taxonomic categories (Cho & Neely, 2013; Neely & Tse,
2009), Maguire et al. (2010) found a large effect of large effect of
category length on 2AFC performance for associative categories
while finding no effect of category length when taxonomic cate-
gories are used. Similarly, the studies that have found DRM
effects, which are possibly the biggest false memory effects found
in list memory paradigms, often use associatively related catego-
ries (Robinson & Roediger, 1997; Roediger & McDermott, 1995).
The distinction between taxonomic and associative categories is
relevant because during presentation of a list of strong associates,
it is very likely that participants may spontaneously generate
associatively related words, leading participants to falsely attribute
their presentation to having occurred on the study list (Underwood,
1965).

Dennis and Humphreys (2001) proposed an IAR account of both
category length and DRM effects and argued that these effects do
not speak directly to similarity among the item representations.
The IAR hypothesis is similar to the source monitoring account of
false memory (Johnson, Hashtroudi, & Lindsay, 1993), which
proposes that false memory is a consequence of the participant
being unable to distinguish between events that actually occurred
and imagined events. Consistent with the IAR hypothesis, Maguire
et al. (2010)’s experiments using associative categories found a
robust effect of category length on 2AFC performance that were
accompanied by no within-category choice advantage. This result
would be expected if increases in category length increased the
likelihood of generating other category exemplars during study,
impairing discrimination of seen from unseen category exemplars.
However, if the exemplars exhibited dissimilar representations like
we are hypothesizing here, no within-category choice advantage
would be expected. Item noise accounts, in contrast, predict both
a category length effect on discriminability and a within-category
choice advantage.

The lack of decrement in discriminability with increasing cate-
gory length in controlled designs, the lack of within-category

10 Neely and Tse (2009) proposed that attention might decrease with
category length, in a manner similar to the way it has been proposed to
decrease with list length. Another possibility is that decreases in perfor-
mance with within-category serial position are because of prediction based
learning mechanisms, whereby the encoding strength is inversely propor-
tional to how predictable an item is given the history of learning. Prediction
based learning has been used to account for primacy effects (Davelaar,
2013; Farrell & Lewandowsky, 2002; Lewandowsky & Murdock, 1989),
spacing effects (Murdock, 2003), and distinctiveness effects (Farrell,
2006).
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choice advantage, and the better discrimination of studied catego-
ries from unstudied categories with increasing category length are
contrary to the pure item noise account of category length effects.
However, we would like to state explicitly that these results do not
preclude the idea that item representations for semantically similar
items exhibit more similarity to each other than unrelated words,
making them more susceptible to item noise. In fact, this idea is
highly plausible. Instead, these results indicate that other cognitive
factors appear to be contributing to the observation of category
length effects with categories constructed from word stimuli, and
these factors complicate making inferences about the differing
susceptibility to item noise across differing degrees of semantic
similarity of the stimuli. The higher similarity among the item
representations for similar words may be so negligibly small that
category length would have to be manipulated to much higher
numbers than in conventional experiments to observe effects con-
sistent with the item noise account, such as the within-category
choice advantage.

Additionally, we have restricted this discussion to experiments
that have used words as stimuli, as that accounts for the majority
of the category length experiments that have been conducted. Our
modeling results indicate that certain nonlinguistic stimuli may be
more susceptible to item noise than word stimuli, indicating that
category length effects consistent with the item noise account
should be detectable using nonlinguistic stimuli. Consistent with
this idea, Konkle, Brady, Alvarez, and Oliva (2010) found robust
category length effects in 2AFC testing using photos of objects.
Furthermore, they used many of the same controls used by Cho
and Neely (2013)’s investigation that failed to find category length
effects with words, such as always testing the same number of
items for each category length and testing the same serial positions
within each category.

Decrements in performance through recognition testing.
One of the more recent lines of research that has been used to
argue for models where item noise is the bulk of interference in
recognition memory concerns the decrease in performance across
test trials in a recognition memory test, which has been robustly
observed in many experiments (Annis, Malmberg, Criss, & Shif-
frin, 2013; Criss et al., 2011; Gillund & Shiffrin, 1984; Kim &
Glanzer, 1995; Malmberg, Criss, Gangwani, & Shiffrin, 2012;
Murdock & Anderson, 1975; Peixotto, 1947; Ratcliff & Hockley,
1980; Ratcliff & Murdock, 1976; Schulman, 1974). Although this
finding had been known for some time, it was unclear whether the
observed decrease was because of the experience of the test items
or the increase in retention interval because of the passage of time.
Recently, Criss et al. (2011) argued that the decrease in perfor-
mance was purely because of accumulated item noise, as one of
their experiments (Experiment 2) included a condition where rec-
ognition testing was delayed by a 20 min filler task. The 20 min
delay exhibited only a relatively small decrement to performance
and was much smaller than the decrement that was observed
through the course of recognition testing, thus, ruling out the
hypothesis that the testing decrement is because of the passage of
time. Converging evidence for the argument that the testing dec-
rement reflects item noise comes from Murdock and Anderson
(1975), who found that the magnitude of the testing decrement
increased with the number of choices on a forced choice recogni-
tion test. If all items on each forced choice trial are added to the
contents of memory, then it naturally follows that trials with more

choices should exhibit greater performance decrements as a con-
sequence of the higher item noise.

Possibly the biggest challenge to the item noise hypothesis of
the testing decrement is that it is unable to explain the fact that the
number of test items exhibit much larger decrements on perfor-
mance than the number of study items, which typically exhibit no
decrement at all under controlled conditions. For instance, Schul-
man (1974) compared list lengths of 25, 50, and 100 items with
equated retention intervals across each list length condition and
compared performance across blocks of 25 2AFC trials. For each
test block, performance was equivalent across the different list
length conditions and yet there were considerable decrements in
performance across the test blocks. A pure item noise account
predicts poorer performance both in later test blocks and for larger
list length conditions.

A plausible contender to the item-noise hypothesis is that con-
textual drift through the course of testing impairs performance.
That is, each test trial may alter the context cue, which decreases
the match to the studied items and consequently decreases recog-
nition performance. The majority of contextual drift theories as-
sume that items, not the passage of time, are the sources of
contextual change (Howard & Kahana, 2002; Mensink & Raalij-
makers, 1988; Murdock, 1997). Thus, Murdock and Anderson’s
(1975) observation that more choices on a forced choice trial cause
greater decrements in performance can be understood as greater
contextual change as a consequence of experiencing more items on
each trial. Although one could argue that the contextual drift
explanation is ad hoc, several investigators have independently
posited the idea that retrieval from episodic memory causes con-
textual change (Jang & Huber, 2008; Klein et al., 2007; Sahakyan
& Hendricks, 2012). In Jang and Huber’s investigation, they found
that retrieval during episodic tasks produced greater contextual
change than other forms of retrieval, which can explain why
testing produced far greater decrements in recognition memory
performance in Criss et al.’s (2011) investigation than that of a 20
min retention interval.

To demonstrate that the contextual drift account can reasonably
account for the testing decrement, we simulated the paradigms of
Schulman (1974) and Murdock and Anderson (1975) with our
model. Group-level predictions from the model for the dataset of
Schulman (1974) were derived by using hyperparameters that most
closely resembled the experimental parameters of the Schulman
experiment. Because of the usage of high frequency word stimuli,
a short study-test delay, and a 2 s study time, we used the context
mismatch variability parameter for high frequency words, the
mean context match for the 3.5 min delay, the item mismatch
variability parameter for word stimuli, and the learning rate for the
3 s study time (that had to be multiplied by .9 to get better
resemblance to performance). All individual trials were simulated,
and after each trial, two items were added to the contents of
memory that corresponded to the two choices on each test trial.
The mean context match for test items was set to one to reflect the
greater recency for test items over study items.

The model predictions can be seen in the left panel of Figure 24.
One can see that the model correctly predicts no decrement of
increasing list length (the data show better performance in longer
lists, although the differences were not significant), but fails to
produce levels of item noise that are sufficient to produce a testing
decrement as large as what is seen in the data. We simulated the
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Demonstration of Schulman (1974)
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Figure 24. Group level predictions for the Schulman (1974) paradigm using parameters derived from the
model fit, where on each individual trial two items are added to the contents of memory. The left panel shows
the model predictions without parameter modification, whereas the right panel shows the model’s predictions
where each item on a test trial multiplies the mean context match by .9955. Because of an unavailability of the
original data from the Schulman (1974) dataset, the data means were approximated from the graphs in the
original article. See the online article for the color version of this figure.

contextual drift assumption by assuming that for each item on each
test trial, the mean match to context for study and test items was
multiplied by .9955 to reflect contextual drift caused by recogni-
tion testing. Predictions from the contextual drift assumption can
be seen in the right panel of Figure 24, and one can see that it
succeeds in capturing both critical aspects of the data: no effect of
list length on recognition performance is predicted, whereas per-
formance decreases dramatically with each block of recognition
testing.

Group-level predictions for the dataset of Murdock and Ander-
son (1975) can be seen in Figure 25. Given that there was imme-
diate testing in their experiment, the mean match to context pa-
rameter . was set to one. The study time and word frequency for
the experiment was not specified, although we obtained reasonable
correspondence with the data using the learning rate r from the
three second study time and the context mismatch variability p for
high frequency words. The left panel shows the predictions from
the model when no contextual drift is used and each test item is
added to the contents of memory. One can see that although
performance is worse as the number of choices is increased, the
level of item noise is insufficient to produce any significant dec-
rements across testing. The right panel shows the performance of
the model with the additional assumption that each item on a test
trial multiplies the mean match to context by .9985. One can see
that the model correctly predicts a larger decrease as the number of
choices on each forced choice trial was increased.

A more recent result that has been used to argue for an item
noise interpretation of the testing decrement comes from an inves-

tigation that used blocked categories at test. Malmberg et al.
(2012) conducted an experiment where all studied words came
from two semantic categories and included a blocked condition
where the test list was divided into two blocks of 150 2AFC trials
where each block tested a different semantic category. Perfor-
mance decreased monotonically through the test list until the
category switch point, at which point performance increased con-
siderably and subsequently decreased over further test trials. In a
control condition, all category exemplars were randomized
through the test block, performance decreased monotonically
through testing. Malmberg et al. (2012) argued that these results
are not only consistent with item noise theories, which predict that
the magnitude of interference is dependent on the similarity of the
cues to the contents of memory, but are also comparable with the
release from proactive interference (PI) results of Wickens and
colleagues (D. D. Wickens, 1970; D. D. Wickens, Born, & Allen,
1963). In release from PI paradigms, recall of trigrams is found to
decline over trials, which has been attributed to a buildup of PI
from the preceding trials (Keppel & Underwood, 1962). However,
when the category of the to-be tested material is suddenly shifted,
such as from digits to consonants, recall improves to around the
level of the first trial. This effect has been dubbed release from PI
because it is as if the shift in the similarity of the learned material
prevents memory from suffering any interference from previous
trials.

Although the data of Malmberg et al. are compelling, their
interpretation that the release from Pl effect in their data are a
consequence of item noise critically assumes that the original
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Figure 25. Group data and model predictions for the Murdock and Anderson (1975) paradigm, where the
number of choices on a forced choice recognition test was manipulated between two and six. The left panel
shows the model predictions without parameter modification, whereas the right panel shows the model’s
predictions each item on a test trial multiplies the mean match to context by .9985. Note: The depicted data
reflect averages across serial positions on the study list. See the online article for the color version of this figure.

release from Pl phenomenon observed by Wickens and colleagues
was also because of the similarity of the item representations. An
alternative conception is that release from PI is generally because
of usage of new cues at retrieval when studied categories are
switched (Gardiner, Craik, & Birtwistle, 1972; Humphreys &
Tehan, 1992; Tehan & Humphreys, 1995, 1996; Watkins & Wat-
kins, 1975). Watkins and Watkins (1975) proposed a cuing expla-
nation of the release from Pl phenomenon in their description of
the cue overload principle, which states that performance degrades
as the number of items associated with a cue is increased. By their
view, when the category of the to-be tested material is suddenly
switched, participants use a new category cue to guide their re-
trieval that exempts items from earlier trials to enter into the
sampling set at recall.

A cuing explanation can similarly be given for the results of
Malmberg et al., in that an obvious switch of the categories
midway through testing may have prompted subjects to use a new
category cue in conjunction with the item cue to overcome the
contextual drift that had occurred throughout the test. Additionally,
although there was a release from Pl effect that was observed when
large blocks of items were tested, no release from Pl was observed
when categories were shifted every five trials during testing, which
is inconsistent with the item noise account of the testing decre-
ment. One possibility is that there are costs associated with switch-
ing category cues that make it less likely when blocks are short,

which is a view that is endorsed by the original authors: “It is less
clear how long a block must be in order to observe a release from
output interference. There are likely costs associated with switch-
ing the contents of retrieval cues, say from emphasizing one set of
item features representing category membership rather than an-
other set” (Malmberg et al., 2012, p. 4).

Evidence for differentiation models of recognition memory.
Throughout this article, we have restricted discussion of item noise
to simple global matching models that predict detrimental effects
of list length and list strength on recognition memory performance
when the item representations bear similarity to each other. An-
other class of models, referred to as differentiation models, was
introduced to predict the null list strength effect in recognition
memory. These models include a variant of the SAM model
(Shiffrin et al., 1990) along with the REM (Shiffrin & Steyvers,
1997) and SLiM (McClelland & Chappell, 1998) models. In dif-
ferentiation models, the first presentation of a study list item
creates a new memory trace corresponding to that item, whereas
subsequent repetitions update that memory trace. The repetition
not only makes the representation more responsive to its own cue,
but also makes the representation less similar to other items. Thus,
strength has the functional effect of decreasing the item noise
among the stored item representations with increasing strength,
whereas more traditional item noise models predict increasing item
noise with increased strength. Increases in list length do not induce
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differentiation but instead create new memory traces, and thus,
differentiation models predict a detrimental effect of list length on
recognition memory performance.

The original motivation behind the differentiation mechanism
was to predict a dissociation between list length and list strength
effects. As previously mentioned, although there were many pub-
lished effects showing detrimental effects of increasing list length,
Dennis and colleagues (e.g., Dennis et al., 2008) have demon-
strated that these appear to be because of confounds present in list
length designs that show no effect of list length for word stimuli
when controlled. While nonlinguistic stimuli such as fractals and
faces show worse performance in longer lists (Kinnell & Dennis,
2012), the same stimuli appear to be susceptible to list strength
effects as well (Osth et al., 2014). With the exception of face
images, which appear to be more susceptible to manipulations of
list length than list strength, in the data and modeling from our fits
there appeared to be no dissociation between the effects of list
length and list strength, as stimuli appeared to be affected nega-
tively by both manipulations or they were not affected. Thus, there
is not strong evidence for dissociation between list length and list
strength effects that warrants a differentiation mechanism.

Another prediction of differentiation models is the strength
based mirror effect (Criss, 2006). Because increased strength
makes a stored memory trace less confusable with other item
representations, lures will exhibit considerably less similarity to
the contents of memory when the memory traces are strong than
when they are weak, making it such that the false alarm rate should
reduce as memory traces are strengthened. As stated previously,
this pattern is robustly observed in item recognition (Hirshman,
1995; Stretch & Wixted, 1998b) and associative recognition (Clark
& Shiffrin, 1992; Hockley & Niewiadomski, 2007; Osth & Dennis,
2014). An alternative explanation of the strength based mirror
effect is that it is caused by a criterion shift. That is, higher
expected memory strength for a tested study list may cause the
participant to adopt a stricter response criterion for the tested
items, reducing the false alarm rate.

To counter the criterion shift argument, Criss (2009, 2010) has
presented evidence in support of the predictions of differentiation
models by demonstrating that memory strength for lures is reduced
under conditions of higher strength. Criss (2009) tested partici-
pants under pure weak and pure strong conditions and asked them
to indicate their confidence on a 20 point scale. Distributions of
subjective memory strength were lower for lures after a pure
strong list than after a pure weak list. To counter the argument that
this was the product of a criterion shift, a manipulation of target
probabilities on the test list did not have any effect on the strength
estimates for lures, despite the fact that it affected bias on their
yes/no repsonses. In addition, Criss (2010) estimated parameters of
the Ratcliff diffusion model (Ratcliff, 1978; Ratcliff & McKoon,
2008) and found that drift rates for lures were lower in a pure
strong condition than in a pure weak condition, whereas a target
probability manipulation only affected the starting point of evi-
dence accumulation and exhibited no effect on the drift rates.

A difficulty in interpreting these results is that they do not only
support differentiation models, but additionally support the overall
class of likelihood ratio models. Our model, which uses a likeli-
hood ratio transformation of the memory strengths, not only pre-
dicts lower FAR under conditions of higher strength but also
predicts that the log likelihood ratio distribution for lures should

also exhibit a lower mean than the corresponding distribution for
lures studied in a weak study list.

A critical difference between our model and the differentiation
approach lies in what generates a shift in the distribution of
evidence for lures when strength is increased. In differentiation
models, the strength based mirror effect is produced by encoding
processes that produce more resilient memory traces. In our model,
it is the higher expected memory strength during a test that holds
lures to a higher standard of evidence, producing lower likelihood
ratios. Starns et al. (2010) noted that when a list of items is
strengthened, both the encoding conditions and test expectations
are confounded with each other. To separate the two accounts, they
had participants undergo a traditional list strength paradigm with
pure weak, mixed, and pure strong lists, but on the mixed lists they
manipulated test expectations by only testing participants on the
weak items or the strong items while informing participants about
the strength composition of the test list. Differentiation models
predict lower false alarm rates for stronger study lists regardless of
what is expected on the test list. In contrast, false alarm rates were
predicted by test expectations, as lower false alarm rates were observed
in the strong test lists and higher false alarm rates were observed
in the weak test lists. False alarm rates to weak test lists were
nearly equivalent to false alarm rates on the pure weak study lists,
and similarly false alarm rates to strong test lists were nearly
equivalent to false alarm rates for the pure strong study lists.

A potential counterargument to the results is that both differen-
tiation and test expectations play a role in producing the strength
based mirror effect. However, Starns et al. (2010) manipulated
strength at two different levels. On some mixed and pure strong
lists, the strong items were presented twice (strong 2 condition),
whereas on others, the strong items were presented five times
(strong 5% condition). False alarm rates in the pure weak tests
were identical in both the strong 2X and strong 5X conditions,
which can be easily explained by assuming that in both lists the
lure items were held to the same expectations of memory strength.
A differentiation model that also uses expected memory strength to
alter the likelihood ratios predicts a lower FAR in the strong 5X
condition because those memory traces are more differentiated
than in the strong 2 condition. Subsequent investigations have
also found that distributions of subjective memory strength
(Starns, White, & Ratcliff, 2012) and drift rates for lures (Starns,
Ratcliff, & White, 2012) are shifted when test expectations are
manipulated following a mixed strength study list.

Thus, the available evidence suggests that differentiation is not
necessary to explain either the null list strength effect or the
strength based mirror effect. However, we do not mean to suggest
that there is no mechanism of differentiation. Differentiation of
item representations over the long term is both plausible and useful
in describing how item representations evolve with experience
even in cognitive domains outside of memory. For instance, Mc-
Clelland et al. (1995) conducted simulations of the Rumelhart
(1990) network of concept learning and demonstrated how differ-
entiation occurs over training. The network is trained on proposi-
tions such as “A robin is a bird” and “A tree has branches.”
McClelland et al. (1995) discovered that during the initial training,
all of the agents (robin, tree, etc.) exhibited similar hidden layer
representations regardless of how similar they were to each other.
As training proceeded to its conclusion, the hidden layer represen-
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tations diverged and dissimilar entities (such as robin and tree)
exhibited dissimilar hidden layer representations.

One distinction between the differentiation of concepts observed
by McClelland et al. and the episodic differentiation models such
as SAM, REM, and SLiM, however, is that the episodic models are
multiple trace models where separate copies of the item represen-
tations are stored in memory. Additionally, the episodic models
posit that when a stimulus is presented in a new context, a new
episodic trace is created and it is during subsequent presentations
within that new context that differentiation of the episodic trace
occurs (Criss, 2006, 2009). In the Rumelhart (1990) network, there
is no obvious distinction between creating and differentiating
representations, and differentiation operates on a larger timescale
than that of a study list in a recognition memory experiments.
Below, we posit that long-term differentiation may be able to
explain the differences between the item noise estimates of lin-
guistic and nonlinguistic stimuli.

Differences Between Linguistic and
Nonlinguistic Stimuli

Another finding in our parameter estimates was the higher esti-
mates of item mismatch variability and item noise for fractals and
faces than for words and scenes. Why would representations of faces
and scenes be more susceptible to item noise? One possibility that was
initially raised by Kinnell and Dennis (2012) is that fractals and faces
have more overlap in their representations, making them more likely
to suffer from effects of list length and list strength. However, why
would stimuli such as faces and fractals exhibit more overlap in their
representations as opposed to words and scenes? One hypothesis is
that long term experience unitizes stimulus representations to mini-
mize within-class similarity. That is, untrained stimuli begin with
overlapping representations, making them susceptible to other stored
stimuli that they are similar to and they suffer from high degrees of
item noise and background noise. However, as stimuli become unit-
ized through training, they exhibit less similarity to other stored
stimuli but still match their own previously stored representations,
making them susceptible to context noise.

This hypothesis was initially proposed by Reder, Angstadt, Cary,
Erickson, and Ayers (2002) to explain the nonmonotonic relationship
between word frequency and recognition memory performance. Al-
though low frequency words outperform high frequency words, very
low frequency words exhibit worse performance than low frequency
words and exhibit higher hit rates and false alarm rates (Wixted, 1992;
Chalmers, Humphreys, & Dennis, 1997; Zechmeister, Curt, & Sebas-
tian, 1978). Reder et al. (2002) conducted a training study with pseudo
words and found that initial training increased hit rates and false alarm
rates, but after 6 weeks of training, a mirror effect was evident with
respect to training, with less frequently trained pseudo words exhib-
iting higher hit rates and lower false alarm rates. Similar results were
found by Nelson and Shiffrin (2013) using Chinese characters as the
stimuli. A training study using very low frequency words conducted
by Chalmers and Humphreys (1998) found that definitions might
facilitate unitization, in that training without definitions hurt perfor-
mance on the words, whereas training with definitions improved
performance on the very low frequency words to around the level of
low frequency words. Converging evidence for the unitization hy-
pothesis could be found by observing how susceptible stimuli are to
list length effects through training.

Item noise estimates for natural scene photographs closely resem-
bled those of single words. Aside from the generally higher perfor-
mance for pictorial stimuli (Brady, Konkle, Alvarez, & Oliva, 2008;
Shepard, 1967; Standing, 1973), representations of scenes may re-
semble words because of the fact that labels can easily be applied to
segments of the images. The idea that pictorial stimuli have linguistic
representations was posited by Paivio (1971, 1976), who argued that
pictures have “dual codes” possessing both perceptual and linguistic
information. Evidence for this hypothesis comes from the finding that
recognition performance for pictures is still superior to single words
when the test stimuli are labels instead of the pictures themselves
(Madigan, 1983; Paivio, 1976). Similarly, a mirror effect that resem-
bles the word frequency mirror effect can be found for pictorial
stimuli. Karlsen and Snodgrass (2004) found that both pictures and
words rated high in familiarity exhibited lower hit rates and higher
false alarm rates than those rated low in familiarity, whereas in free
recall both pictures and words rated high in familiarity were better
recalled.

What kind of model could explain the unitization process? De-
creasing the within-class similarity for a stimulus set is very similar to
the principle of differentiation used in differentiation models such as
SAM, REM, and SLiM. However, a critical distinction we would like
to address is that differentiation models of episodic memory operate
over the short term, whereas we argue that a differentiation-like
process operates over longer time scales. Specifically, in short-term
differentiation models, presentation of a familiar stimulus in a new
context creates a new representation and subsequent presentations
refine that newly created representation (Criss, 2006, 2009). We
hypothesize that there is no distinction between creating and updating
episodic item representations. Familiarization with a stimulus de-
creases its overlap with other stimuli of the same class, minimizing
item noise and background noise, but increasing the susceptibility of
the stimulus to context noise as it becomes bound to more contexts
with further experience.

The current modeling exercise gives no insight as to how the
minimization of the overlap might occur. A complete model of
episodic and general memory would need to describe how the item
representations evolve with experience and would require long-term
training data to constrain the parameters that guide the transitions (see
Nelson & Shiffrin, 2013, for one such attempt). One possible mech-
anism for stimulus unitization is competitive auto-association. Al-
though our current model only describes associations between the
item and context layers, within-layer connections for the items could
be implemented as well (e.g., J. A. Anderson, Silverstein, Ritz, &
Jones, 1977). Distributed item representations could become sparser
over long term experience if each item layer is competitive such that
only a small number of units can be active at a given time, which is
achieved in neural networks by usage of the k-winner takes-all
(KWTA) algorithm. Norman and O’Reilly (2003) used the k-WTA
algorithm in recognition memory to show that item representations
could become more sparse as a consequence of experience, indicating
that such an approach shows promise for this endeavor.

On the Plausibility of the Likelihood
Ratio Transformation

In our model, the mirror effect is captured via usage of a log
likelihood ratio transformation of the memory strengths. Glanzer et
al. (1993) argued that the usage of the likelihood ratio transfor-
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mation obviates the need for a criterion shift to capture the mirror
effect. Support for the usage of such a transformation comes not
just from being able to capture the mirror pattern of hit and false
alarm rates, but from several confirmed predictions of specific
changes in the shapes of the likelihood ratio distributions in
responses to experimental manipulations. Glanzer et al. (1993)
demonstrated that conditions that produce better performance pro-
duce old and new distributions that are not only further from the
center of the decision axis (where the log likelihood ratio is zero),
but also that the variances of both the old and new distributions are
higher for conditions of better performance. Conversely, as per-
formance degrades, both the old and new distributions converge at
the center of the decision axis. Glanzer et al. (1991) referred to this
prediction as concentering.

A consequence of concentering is that if one were to consider
distributions for high and low frequency lures, or high and low
frequency targets, discriminability between the two distributions
corresponding to the word frequency classes improves as perfor-
mance is increased. In other words, the magnitude of the word
frequency effect is dependent on the level of performance. Glanzer
and colleagues tested this prediction using the aforementioned
2AFC null comparison procedure of Glanzer and Bowles (1976)
where two targets (null target trials) or two distracters (null dis-
tracter trials) of different word frequency classes are tested. The
likelihood ratio models make the prediction in this paradigm that
both the probability of choosing the LF target on null target trials
(p(LO, HO)) and the probability of choosing the HF distracter on
null distracter trials (p(HN, LN)) should increase under conditions
of better performance. Glanzer and colleagues have confirmed this
prediction for manipulations of study time (Kim & Glanzer, 1993),
repetitions (Hilford et al., 1997), study-test delay (Glanzer et al.,
1991), and decrements in performance with recognition testing
(Kim & Glanzer, 1995). In each of these experiments, better
performance usually corresponded to higher values of both p(LO,
HO) and p(HN, LN). The latter finding is quite surprising, as the
two stimuli were not studied and yet the decision between them is
still influenced by the nature of the study episode, such as how
much study time was allotted to the study list items.

Moreover, a recent analysis of Glanzer et al. (2009) confirmed
a number of predictions from likelihood ratio models across a large
number of ROC experiments. The prediction that variance of the
underlying distributions increase with increases in performance
was confirmed by constructing ROCs where false alarm rates from
different conditions are compared (e.g., HF FAR vs. LF FAR) and
measuring the slope of the z-transformed ROC. Higher variances
for better performing conditions were found across a large number
of manipulations, including word frequency, study time, repeti-
tions, and study-test delay. Another prediction was that the overall
length of the zROC points should be shorter for conditions of
better performance, which was confirmed across a number of
experiments and initially tested and confirmed by Stretch and
Wixted (1998a).

Although these investigations found evidence for the distribu-
tional predictions of likelihood ratio models, a direct test of the
psychological theory behind likelihood ratio models was con-
ducted by Wixted and colleagues. Likelihood ratio models assume
that participants use information about the stimulus to make their
recognition decisions. Stretch and Wixted (1998b) reasoned that if
this is the case, then if participants were to study mixed lists of

strong and weak items and at test were presented with cues to
denote whether the item was strong or weak, participants should
use this to inform their recognition decisions and exhibit a higher
false alarm rate for weak cues. In contrast, the data showed that
participants had equivalent false alarm rates to strong and weak
cues. Morrell, Gaitan, and Wixted (2002) conducted similar ex-
periments that yielded the same conclusions. In their experiments,
participants studied a category where exemplars were repeated
several times (strong category) and another category where items
were only presented once (weak category). False alarm rates to
weak and strong categories were equivalent. Based on these data,
Wixted and colleagues argued that participants do not appear to
use the strength cues on a trial-by-trial basis, casting doubt on
whether participants are transforming memory evidence on the
basis of expected memorability.

However, recent evidence from Starns and colleagues suggests
that participants can use experimenter provided cues to inform
their recognition judgments. In the aforementioned study by Starns
et al. (2010), after studying a mixed list, when participants were
told that they would be tested on only weak or strong items, false
alarm rates very closely resembled false alarm rates from the pure
weak and pure strong tests. Further tests of the Stretch and Wixted
(1998b) procedure have also found that participants can adjust
expectations to the colors that denote different levels of strength.
Hicks and Starns (2014) found that participants exhibited different
false alarm rates to different color strength cues when strong and
weak items were tested in separate blocks of 40 items. Starns and
Olchowski (2014) found a similar compliance with colored
strength cues when the weak and strong items required different
response keys using randomized presentation of the strength cues.

Similarly, other studies have found different false alarm rates for
conditions outside of the color cue procedure. Singer and Wixted
(2006) tested categories from different retention intervals and
found different false alarm rates for immediate and delayed cate-
gories when the two categories were studied 2 days apart. Further-
more, an ROC analysis that compared the false alarm rates from
the immediate and delayed categories revealed higher variability
for the immediate categories, a result that is consistent with the
predictions of likelihood ratio models. Singer (2009) found differ-
ent false alarm rates for strong and weak categories when a
pleasantness ratings task was used at encoding, contrary to the
results of Morrell et al. (2002). Although these results show a
willingness to use experimenter provided cues to inform recogni-
tion decisions appears to support likelihood ratio models, why do
these data provide support for while the investigations of Stretch
and Wixted (1998b) and Morrell et al. (2002) did not? One
possibility is that participants regularly rely on likelihood ratios to
make recognition decisions, but have difficulty in mapping their
expected memorabilities to novel experiment provided cues such
as color, which would not be expected to be predictive of memory
strength a priori. Procedures such as blocking and making different
responses may facilitate usage of the strength cues.

Other Sources of Variability in Recognition Memory

One source of variability that was not included in the model fit
was trial-to-trial variability in criterion placement. A number of
criterion noise models of signal detection have been developed that
include such variability (Benjamin, Diaz, & Wee, 2009; Mueller &
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Weidemann, 2008; Wickelgren, 1968). However, one of the crit-
ical challenges in incorporating criterion variability into a model
fit is identifying its contribution from the variability in memory
strength. Benjamin et al. (2009) proposed that such measurement
can be done using an ensemble recognition paradigm in which
participants give yes/no decisions not to one stimulus, but to
ensembles of old and new words that vary in the number of words
contained in the ensemble, with the logic being that ensemble size
constrains memory strength variability but does not affect criterion
variability. However, the approach of Benjamin et al. (2009)
remains somewhat controversial, as Kellen, Klauer, and Singmann
(2012) have argued that Benjamin et al. (2009) severely overesti-
mated criterion noise in their dataset. They demonstrated in their
model fit that if decision criteria are allowed to shift across the
ensemble sizes, criterion variability estimates decrease dramati-
cally.

Another approach that avoids the usage of new paradigms
involves usage of response time models to quantify decision noise.
The majority of current sequential sampling models of response
time use trial-to-trial variability in the starting point of evidence
accumulation (S. D. Brown & Heathcote, 2008; Ratcliff et al.,
1999; Usher & McClelland, 2001), a source of decision noise that
has been described as analogous to criterion variability in a signal
detection framework (Benjamin, 2013; Benjamin et al., 2009).
Although sequential sampling models are quite successful in their
ability to measure aspects of the decision-making process such as
response caution, bias, and the strength of the evidence, they are
not able to specify the contributions of encoding and interference
that are contributing to the evidence used in the decision. One
possible extension of our model is to use a back-end sequential
sampling model to produce decisions, allowing the model to not
only make response time predictions but also to estimate the
contribution of decision noise. We were not able to undertake such
an approach in the current investigation because much larger
numbers of correct and error responses are needed in each re-
sponse category than are contained in our present datasets to
properly estimate the response time distributions (Ratcliff & McK-
oon, 2008).

Conclusion

Our fits of a global matching model that parameterizes the
matches and mismatches to item and context demonstrated that the
bulk of interference comes from experiences before the list-
learning episode (context noise and background noise), with con-
fusable stimuli such as fractals and faces exhibiting at most small
contributions of item noise. While these parameter estimates may
seem counterintuitive, they appear to be quite consistent with a
wide variety of findings in the recognition memory literature as
well as theories in cognitive neuroscience that advocate sparse
distributed item representations.

Additionally, the model was able to fit quite well to a variety of
manipulations of stimulus class, strength, list length, list strength,
study-test delay, and word frequency. Several of these variables
have been considered challenging to the first generation of global
matching models, whereas the results of our modeling work sug-
gest that the initial global matching models are quite capable of
addressing these results by parameterizing the similarities between
the representations. An additional advantage to parameterizing

similarities instead of vectors is that it obviates the need for a
vector size parameter, which affects the identifiability of the model
parameters (Montenegro et al., 2014; Myung et al., 2007). Small
effects of list length and list strength are well accommodated by
low values of item mismatch, unequal variance between targets
and lures can be explained with item and context match variability,
and mirror effects are capably explained by a likelihood ratio
transformation of memory strengths. The global matching model
we present is both simple and tractable, and shows promise in
being extended to other memory tasks.
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Appendix A

Derivations for the Mean and Variance of Memory Strength in Associative Recognition

In associative recognition, the co-occurrence tensor M. can be
decomposed into the memories that are contributing to the memory
strength s that is generated at retrieval from a list of pairs L. Pairs
stored during the list episode are scaled by the associative learning
rate r o Given that we are investigating datasets in which the word
pairs are random pairings of unrelated words, we can assume that the
probability of having seen a pair combination before the experi-
ment is negligible and thus, the context noise term can be omitted.
We also assume no common words among the word pairs:

Sniact = (CL®1L®11)  Taoe(Cs® 1, 1y)  Self Match

D T C®1L®1)) Item Noise
i,jEL,i,j#ab
+ X (C®1,81y) Background Noise

ueP,u#s
If the probe cue is a rearranged pair, there is no self match.
However, there are two partial matches terms. For a list of pairs
A-B, C-D, E-F, etc., a rearranged pair A-D will have a partial
match to the stored A-B and C-D pairs:

Srearranged = (Co® 1, ® 1) Taseoe(Cs® 1,® 1) Partial Match
*+ Mo Cs® B 1) Partial Match
+ > aedCs®L® 1))

ijeLijzabcd

+ > (C,®1,81)

UEP,u#s

Item Noise

Background Noise

The above equations can be rewritten as matches and mismatches
between the item and context vectors:

Sntact = Fassoe(Co- Co) (15 1a) (1 - 1) Self Match
+ 20 Tasod(Co C) (I 1) (I, 1)) 1tem Noise
|,JEL,|,]#a,b, , ,
+ 2 (G C)(Ia 1)1y 1) Background Noise
ueP,u#s

(18)

Partial Match
Partial Match

Srearranged = r’aSSOC(C;,' CS)(I:;K Ia)(lc’i' Ib)
+ Tassoc(Co  C) (I 16) (14 19)
+ D Tasd( G CY(1a 1) (1 1)

ijeLij7abcd

+ E (C;CU)(I;' Iy)(l;' IZ)

ueP,u#s

Item Noise

Background Noise
(19)

The matches and mismatches of the context vectors can be sub-

stituted using the same parameters for the normal distribution used
in Equation 7 for item recognition.

(Appendices continue)
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Appendix B

Equations for the Log Likelihood Ratio Transformation of Memory Strength

For our model, we used the analytic expressions for the likelihood
ratio transformation derived by Glanzer et al. (2009) for both the equal
variance and unequal variance normal distributions. In our model, the
ratio of SDS 0, /0 4 depends on a number of model parameters, and
ratios can be one or greater although ratios below one are the most
common. Following Glanzer et al., we use X to refer to samples on the
memory strength axis and A to refer to log likelihood ratios.

The equations described in Glanzer et al. (2009) describe a fully
informed likelihood ratio model where the actual memory strengths
are equivalent to the strengths used in the likelihood ratio. As de-
scribed in the text, the expected strengths in the likelihood ratio need
not be equivalent to the actual strengths. In the mixed lists in our list
strength datasets, we assume that despite the fact that tested items
have different strengths, the same expected strengths in the likelihood
ratio are used for each item. We describe the expected strengths as
“subjective strengths.” We describe the actual means and SDs of the
memory strength distributions as . and o, whereas the subjective means
and s of the memory strength distributions are denoted as p and .

Glanzer et al.’s equations were written expressed for the case where
0nev = 1 and differences in strength were expressed as different
values of 4 For that reason, in their expressions d’ and d equal g4
in the unequal variance and equal variance models, respectively.
Given that in our model both o, and o4 vary, all parameters are
normalized by 7, before usage in any of the equations below.

For the equal variance log likelihood ratio transformation, we use
the equations in Appendix A of Glanzer et al. (2009). This results in
normal distributions with means and variances as follows:

E(A|Old) =d'%/2
E(A |New) = d'pgq — d'?/2
Var(A) = d'?02,

where d' = pog/Traw Hog @nd o4 are normalized by 7, and
e TESPECiIVELY.

For the unequal variance log likelihood ratio transformation, we use
the equations in Appendix B of Glanzer et al. (2009). Like with the
equal variance case, 0., IS @assumed to be one. The parameter s refers
to the subjective ratio of SDs 7, 4/They The resulting log likelihood
ratio distributions are noncentral x? distributions, where the x is:

@ + (F)/[25°(s* — 1)] — (d?/25%) — log(s)
0')2((92 —1)/2¢?

where & is the criterion on the log likelihood ratio axis and d =
Poid/ Trew 0% i the actual variance of the target or lure distribution
normalized by 72, The noncentral x2 distribution has 1 df and
noncentrality:

( —d/(s%/2) - Mx)z

Ox

where . and oy are the actual means and SDs of the target or lure
distribution normalized by T,,. Predictions for old or new items
can be derived from these equations by substituting values of the
appropriate distribution for py and oy.

One should note that it is also possible for our model to produce
cases where oo, > 044 (although in the model fits, it was quite
rare). Hit and false alarm rate predictions are produced for this case
by merely taking using the cumulative distribution function with
the parameters above, whereas in the standard o4 > 0o, Case, hit
and false alarm rates are produced by subtracting the cumulative
distribution function from one.

(Appendices continue)
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Appendix C

Binomial and Multinomial Rate Estimation

While some investigations estimate the relevant parameters
from signal detection theory (d’" and c) and derive the hit rate h and
false alarm rate f directly from those estimates (Dennis et al., 2008;
Pooley et al., 2011), we did not want the rates to have to conform
to a particular signal detection model. Instead, rates h and f were
estimated directly from the hit and false alarm counts:

Hi,j,k~ B|n0ma] (hi,j,k7 T],k)

Fi,j,k~ B|n0ma] (hi,j,kl L],k)
Confidence counts were sampled from a multinomial distribution:
< fCG,il T)

S fein L)

All rates for individual participants in the yes/no conditions were
sampled from reparameterized B distributions, which uses a mean
parameter \ and variance parameter v:

Hewir - - -, Hegj ~ Multinomial (heyj, . -

Fetir - - - Fesi ~ Multinomial (fe, ..

hy jc~ Beta (A jio Vi1
fi i~ Beta (A jio Vi1

Separate \ and v parameters were used for each hit and false
alarm rate for each condition. The hyperparameters for the means
and variances used nearly noninformative priors:

)\j,k~ Beta (.5, 2)
vk~ InverseGamma (.1, .1)

For the confidence counts in the DeCarlo (2007) dataset, multi-
nomial rates for each confidence category were sampled from
reparameterized { distributions, but were subsequently normalized
to sum to one. We designate the samples before normalization as
hc and fc:

thl,il ey thG,i ~Multinomial ()\h,cl,i: ey fh,cG,il T

- Fresin L)

Rates h and f were obtained by normalization:

fCCl,i’ ey fCCG,i ~ Mult|n0m|a| ()\f,cl,i' . e
Regi -+ Negi = NCa /K, - .+ NCes i/ Ky
fai o T = feai/k . e ik
where K is
Kni = Knci T Knezi T+ -+ KneoiKei = Keeri + K25+ o+ Ke s
(20)

Each rate parameter was estimated with four chains of 5,000
samples each after a burn-in period of 1,500 samples using JAGS
software.

(Appendices continue)
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Appendix D
Cross Validation

To assess the generalizability of the model, we performed a
cross validation procedure. In cross validation, model generaliz-
ability is assessed by fitting a model’s parameters to a sample of
the complete data while withholding some portion of remaining
data. Subsequently, the model’s fit is assessed by comparing its
predictions to the withheld data. For the present purposes, we have
adopted a k fold cross validation procedure, which has been shown
to outperform the leave-one-out cross validation (LOOCV)
method (Arlot & Celisse, 2010). In the k folds procedure, the data
are equally divided into k sections, or folds, and the model is
independently fit to each fold. To perform this procedure, we
randomized the trial order of each participant’s data and divided it
up into eight folds (k = 8) because of the fact that eight was the
largest number of observations for the associative recognition
datasets. An equal number of observations for each condition and
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Figure D1. Density estimates of the ROC function for both the data of
DeCarlo (2007, left) and cross validation model fit (right) for low (top) and
high (bottom) frequency words. The circles indicate the median of the hit and
false alarm rate posterior distributions for each ROC point. LF = low fre-
quency; HF = high-frequency; HR = hit rate; FAR = false alarm rate. See the
online article for the color version of this figure.

z(FAR) z(FAR)

Figure D2. Density estimates of the zZROC function for both the data of
DeCarlo (2007, left) and cross validation model fit (right) for low (top) and
high (bottom) frequency words. The circles indicate the median of the
z-transformed hit and false alarm rate posterior distributions for each ROC
point. LF = low frequency; HF = high-frequency; HR = hit rate; FAR =
false alarm rate. See the online article for the color version of this figure.

trial type were in each fold. The model was fit using the same
prior distributions and number of chains (32) as in the original
model fit.

For each fold in the cross validation, predictions for the
withheld data were generated from the participant parameters in
each fold from a single randomly selected set of parameters
from each participant’s posterior distribution. Subsequently, the
predictions for each set of withheld data were summed together
to produce a complete set of predictions for the withheld data.
As an example, if there were eight observations per condition,
a randomly selected set of parameters was used to generate
predictions for the single withheld observation in each condi-
tion. For each fold there would be a single withheld observa-
tion, and the predictions from each of the eight folds were
summed to produce a complete set of predictions (eight obser-
vations) for the withheld data for each participant.

(Appendices continue)
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To compare the predictions of the withheld data against the
model, we used the rate estimation procedure described in Appen-
dix C to estimate the posterior distributions on the hit and false
alarm rates. The model’s predictions were compared against the
original data in the same manner was used in the body of the text.
Namely, posterior distributions on the group means for the hit and
false alarm rates of both the data and the model were compared
against each other. Depictions of the ROC and zROC data and
predictions from DeCarlo (2007) can be seen in Figures D1
and D2, fits to the Dennis et al. (2008) dataset can be seen in
Figure D3, fits to the data from the experiments using nonlinguistic
stimuli can be seen in Figure D4, and fits to the associative
recognition data can be seen in Figure D5. One can see from
inspection of the figures that the fit is quite good, and any impair-
ment in the fit appears to be quite minor. This may be because
several of the constraints on the model are operating across mul-
tiple datasets.

To assess the consistency in the parameter estimates across each
of the folds, we calculated the proportion of total interference in
the same manner as depicted in Figure 23. Median proportions of
total interference for each interference contribution in each fold
can be seen in Table D1. One can see that there is qualitative
consistency across the eight folds. Each fold is in agreement with
the conclusions of the main fit, namely that item noise is not a
dominant source of interference in any of the datasets. Where there
is the weakest across-fold consistency is in the two datasets that
use fractals as stimuli. However, inspection of the interference
proportion estimates of the main fit in Figure 23 reveals that the

Fit to Dennis, Lee, and Kinnell (2008)
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1.0 — . . :
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FigureD3. Fitto the data of Dennis et al. (2008) for all conditions. Depicted
are the density estimates from group level parameters for both the data and the
model, along with median posterior estimates for the data (circles) and the
model (x’s). Density estimates are depicted as teardrop plots, which vertically
depict the entire posterior distribution by plotting them sideways (see the main
text for more description). LF = low frequency; HF = high-frequency; HR =
hit rate; FAR = false alarm rate. See the online article for the color version of
this figure.

datasets that use fractals as stimuli have the widest confidence
intervals of all of the fits.

(Appendices continue)
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Non-linguistic Stimuli
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FigureD4. Hitand false alarm rates for the data and the cross validation model fit to the list length experiments
of Kinnell and Dennis (2012, left) and the list strength experiments of Osth et al. (2014, right) that use
nonlinguistic stimuli. Depicted are the density estimates from group level parameters for both the data and the
model, along with median posterior estimates for the data (circles) and the model (x’s). HR = hit rate; FAR =
false alarm rate. See the online article for the color version of this figure.
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Associative Recognition
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FigureD5. Hitand false alarm rates for the data and the cross validation model fit to the list length experiments
of Kinnell and Dennis (2012, left) and the list strength experiments of Osth and Dennis (201, right) that use word
pairs in an associative recognition task. Depicted are the density estimates from group level parameters for both
the data and the model, along with median posterior estimates for the data (circles) and the model (x’s). HR =
hit rate; FAR = false alarm rate. See the online article for the color version of this figure.

Table D1

Median Proportions of Total Interference for Each Interference Contribution as Measured By Each of the Eight Folds in the Cross
Validation Procedure

Folds
Interference 1 2 3 4 5 6 7 8

Dennis, Lee, and Kinnell (2008): LF Words

IN .0008 .0027 .0004 .0007 .0041 .0004 .0019 .0029

CN .0003 .0005 .0006 .0001 .0016 .0000 .0002 .0004

BN .9955 .9888 .9936 .9961 .9841 .9971 .9917 .9872
Dennis, Lee, and Kinnell (2008): HF Words

IN .0004 .0014 .0002 .0004 .0021 .0002 .0009 .0015

CN .0502 4914 .4966 4870 4961 4921 .4855 .4885

BN 4928 .9888 4977 .5089 4959 .5048 .5064 5012
List length: Fractals

IN .1064 .2002 1769 .0784 .2815 .2044 1157 .1693

BN .8934 .7998 8231 .9215 7184 .7955 .8842 .8306
List strength: Fractals

IN .1583 .2888 2475 1207 4141 3132 1724 2441

BN .8417 7119 .7525 .8793 .5859 .6868 .8276 .7558
List length: Faces

IN .3065 .3322 3178 .3195 .2996 .2705 .3203 .2545

BN .6935 .6678 .6821 .6804 .7000 7294 .6797 .7455
List strength: Faces

IN .3922 4173 .3975 4157 .3749 .3561 .3964 .3206

BN .6088 .5827 .6025 5842 .6250 .6438 .6035 6793
List length: Scenes

IN .0000 .0000 .0000 .0000 .0001 .0000 .0002 .0000

BN .9999 .9999 .9999 .9999 .9999 .9999 .9998 .9999
List strength: Scenes

IN .0000 .0000 .0000 .0000 .0002 .0000 .0003 .0000

BN .9999 .9999 .9999 .9999 .9998 .9999 .9997 .9999
List length: Pairs

IN .0000 .0000 .0000 .0000 .0001 .0000 .0000 .0000

BN .9999 .9999 .9999 .9999 .9998 .9999 .9999 .9999
List strength: Pairs

IN .0000 .0000 .0000 .0000 .0001 .0000 .0000 .0000

BN .9999 .9999 .9999 .9999 .9998 .9999 .9999 .9999

Note. LF = low frequency; HF = high-frequency; IN = item noise; CN = context noise; BN = background noise.
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